Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Overview

Net2Net

Code accompanying the NeurIPS 2020 oral paper

Network-to-Network Translation with Conditional Invertible Neural Networks
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

tl;dr Our approach distills the residual information of one model with respect to another's and thereby enables translation between fixed off-the-shelf expert models such as BERT and BigGAN without having to modify or finetune them.

teaser arXiv | BibTeX | Project Page

News Dec 19th, 2020: added SBERT-to-BigGAN, SBERT-to-BigBiGAN and SBERT-to-AE (COCO)

Requirements

A suitable conda environment named net2net can be created and activated with:

conda env create -f environment.yaml
conda activate net2net

Datasets

  • CelebA: Create a symlink 'data/CelebA' pointing to a folder which contains the following files:
    .
    ├── identity_CelebA.txt
    ├── img_align_celeba
    ├── list_attr_celeba.txt
    └── list_eval_partition.txt
    
    These files can be obtained here.
  • CelebA-HQ: Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).
  • FFHQ: Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.
  • Anime Faces: First download the face images from the Anime Crop dataset and then apply the preprocessing of FFHQ to those images. We only keep images where the underlying dlib face recognition model recognizes a face. Finally, create a symlink data/anime which contains the processed anime face images.
  • Oil Portraits: Download here. Unpack the content and place the files in data/portraits. It consists of 18k oil portraits, which were obtained by running dlib on a subset of the WikiArt dataset dataset, kindly provided by A Style-Aware Content Loss for Real-time HD Style Transfer.
  • COCO: Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage.

ML4Creativity Demo

We include a streamlit demo, which utilizes our approach to demonstrate biases of datasets and their creative applications. More information can be found in our paper A Note on Data Biases in Generative Models from the Machine Learning for Creativity and Design at NeurIPS 2020. Download the models from

and place them into logs. Run the demo with

streamlit run ml4cad.py

Training

Our code uses Pytorch-Lightning and thus natively supports things like 16-bit precision, multi-GPU training and gradient accumulation. Training details for any model need to be specified in a dedicated .yaml file. In general, such a config file is structured as follows:

model:
  base_learning_rate: 4.5e-6
  target: 
   
    
  params:
    ...
data:
  target: translation.DataModuleFromConfig
  params:
    batch_size: ...
    num_workers: ...
    train:
      target: 
    
     
      params:
        ...
    validation:
      target: 
     
      
      params:
        ...

     
    
   

Any Pytorch-Lightning model specified under model.target is then trained on the specified data by running the command:

python translation.py --base 
   
     -t --gpus 0,

   

All available Pytorch-Lightning trainer arguments can be added via the command line, e.g. run

python translation.py --base 
   
     -t --gpus 0,1,2,3 --precision 16 --accumulate_grad_batches 2

   

to train a model on 4 GPUs using 16-bit precision and a 2-step gradient accumulation. More details are provided in the examples below.

Training a cINN

Training a cINN for network-to-network translation usually utilizes the Lighnting Module net2net.models.flows.flow.Net2NetFlow and makes a few further assumptions on the configuration file and model interface:

model:
  base_learning_rate: 4.5e-6
  target: net2net.models.flows.flow.Net2NetFlow
  params:
    flow_config:
      target: 
   
    
      params:
        ...

    cond_stage_config:
      target: 
    
     
      params:
        ...

    first_stage_config:
      target: 
     
      
      params:
        ...

     
    
   

Here, the entries under flow_config specifies the architecture and parameters of the conditional INN; cond_stage_config specifies the first network whose representation is to be translated into another network specified by first_stage_config. Our model net2net.models.flows.flow.Net2NetFlow expects that the first
network has a .encode() method which produces the representation of interest, while the second network should have an encode() and a decode() method, such that both of them applied sequentially produce the networks output. This allows for a modular combination of arbitrary models of interest. For more details, see the examples below.

Training a cINN - Superresolution

superres Training details for a cINN to concatenate two autoencoders from different image scales for stochastic superresolution are specified in configs/translation/faces32-to-256.yaml.

To train a model for translating from 32 x 32 images to 256 x 256 images on GPU 0, run

python translation.py --base configs/translation/faces32-to-faces256.yaml -t --gpus 0, 

and specify any additional training commands as described above. Note that this setup requires two pretrained autoencoder models, one on 32 x 32 images and the other on 256 x 256. If you want to train them yourself on a combination of FFHQ and CelebA-HQ, run

python translation.py --base configs/autoencoder/faces32.yaml -t --gpus 
   
    , 

   

for the 32 x 32 images; and

python translation.py --base configs/autoencoder/faces256.yaml -t --gpus 
   
    , 

   

for the model on 256 x 256 images. After training, adopt the corresponding model paths in configs/translation/faces32-to-faces256.yaml. Additionally, we provide weights of pretrained autoencoders for both settings: Weights 32x32; Weights256x256. To run the training as described above, put them into logs/2020-10-16T17-11-42_FacesFQ32x32/checkpoints/last.ckptand logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt, respectively.

Training a cINN - Unpaired Translation

superres All training scenarios for unpaired translation are specified in the configs in configs/creativity. We provide code and pretrained autoencoder models for three different translation tasks:

  • AnimePhotography; see configs/creativity/anime_photography_256.yaml. Download autoencoder checkpoint (Download Anime+Photography) and place into logs/2020-09-30T21-40-22_AnimeAndFHQ/checkpoints/epoch=000007.ckpt.
  • Oil-PortraitPhotography; see configs/creativity/portraits_photography_256.yaml Download autoencoder checkpoint (Download Portrait+Photography) and place into logs/2020-09-29T23-47-10_PortraitsAndFFHQ/checkpoints/epoch=000004.ckpt.
  • FFHQCelebA-HQCelebA; see configs/creativity/celeba_celebahq_ffhq_256.yaml Download autoencoder checkpoint (Download FFHQ+CelebAHQ+CelebA) and place into logs/2020-09-16T16-23-39_FacesXL256z128/checkpoints/last.ckpt. Note that this is the same autoencoder checkpoint as for the stochastic superresolution experiment.

To train a cINN on one of these unpaired transfer tasks using the first GPU, simply run

python translation.py --base configs/creativity/
   
    .yaml -t --gpus 0,

   

where .yaml is one of portraits_photography_256.yaml, celeba_celebahq_ffhq_256.yaml or anime_photography_256.yaml. Providing additional arguments to the pytorch-lightning trainer object is also possible as described above.

In our framework, unpaired translation between domains is formulated as a translation between expert 1, a model which can infer the domain a given image belongs to, and expert 2, a model which can synthesize images of each domain. In the examples provided, we assume that the domain label comes with the dataset and provide the net2net.modules.labels.model.Labelator module, which simply returns a one hot encoding of this label. However, one could also use a classification model which infers the domain label from the image itself. For expert 2, our examples use an autoencoder trained jointly on all domains, which is easily achieved by concatenating datasets together. The provided net2net.data.base.ConcatDatasetWithIndex concatenates datasets and returns the corresponding dataset label for each example, which can then be used by the Labelator class for the translation. The training configurations for the autoencoders used in the creativity experiments are included in configs/autoencoder/anime_photography_256.yaml, configs/autoencoder/celeba_celebahq_ffhq_256.yaml and configs/autoencoder/portraits_photography_256.yaml.

Unpaired Translation on Custom Datasets

Create pytorch datasets for each of your domains, create a concatenated dataset with ConcatDatasetWithIndex (follow the example in net2net.data.faces.CCFQTrain), train an autoencoder on the concatenated dataset (adjust the data section in configs/autoencoder/celeba_celebahq_ffhq_256.yaml) and finally train a net2net translation model between a Labelator and your autoencoder (adjust the sections data and first_stage_config in configs/creativity/celeba_celebahq_ffhq_256.yaml). You can then also add your new model to the available modes in the ml4cad.py demo to visualize the results.

Training a cINN - Text-to-Image

texttoimage We provide code to obtain a text-to-image model by translating between a text model (SBERT) and an image decoder. To show the flexibility of our approach, we include code for three different decoders: BigGAN, as described in the paper, BigBiGAN, which is only available as a tensorflow model and thus nicely shows how our approach can work with black-box experts, and an autoencoder.

SBERT-to-BigGAN

Train with

python translation.py --base configs/translation/sbert-to-biggan256.yaml -t --gpus 0,

When running it for the first time, the required models will be downloaded automatically.

SBERT-to-BigBiGAN

Since BigBiGAN is only available on tensorflow-hub, this example has an additional dependency on tensorflow. A suitable environment is provided in env_bigbigan.yaml, and you will need COCO for training. You can then start training with

python translation.py --base configs/translation/sbert-to-bigbigan.yaml -t --gpus 0,

Note that the BigBiGAN class is just a naive wrapper, which converts pytorch tensors to numpy arrays, feeds them to the tensorflow graph and again converts the result to pytorch tensors. It does not require gradients of the expert model and serves as a good example on how to use black-box experts.

SBERT-to-AE

Similarly to the other examples, you can also train your own autoencoder on COCO with

python translation.py --base configs/autoencoder/coco256.yaml -t --gpus 0,

or download a pre-trained one, and translate to it by running

python translation.py --base configs/translation/sbert-to-ae-coco256.yaml -t --gpus 0,

Shout-outs

Thanks to everyone who makes their code and models available.

BibTeX

@misc{rombach2020networktonetwork,
      title={Network-to-Network Translation with Conditional Invertible Neural Networks},
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2020},
      eprint={2005.13580},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{esser2020note,
      title={A Note on Data Biases in Generative Models}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.02516},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023