Analysis of rationale selection in neural rationale models

Overview

Neural Rationale Interpretability Analysis

We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as implemented in Interpretable Neural Predictions with Differentiable Binary Variables by Bastings et al. (2019). We have copied their original repository and build upon it with data perturbation analysis. Specifically, we implement a procedure to perturb sentences of the Stanford Sentiment Treebank (SST) data set and analyze the behavior of the models on the original and perturbed test sets.

Instructions

Installation

You need to have Python 3.6 or higher installed. First clone this repository.

Install all required Python packages using:

pip install -r requirements.txt

And finally download the data:

cd interpretable_predictions
./download_data_sst.sh

This will download the SST data (including filtered word embeddings).

Perturbed data and the model behavior on it is saved in data/sst/data_info.pickle, results/sst/latent_30pct/data_results.pickle, and results/sst/bernoulli_sparsity01505/data_results.pickle. To perform analysis on these, skip to the Plotting and Analysis section. To reproduce these results, continue as below.

Training on Stanford Sentiment Treebank (SST)

To train the latent (CR) rationale model to select 30% of text:

python -m latent_rationale.sst.train \
  --model latent --selection 0.3 --save_path results/sst/latent_30pct

To train the Bernoulli REINFORCE (PG) model with L0 penalty weight 0.01505:

python -m latent_rationale.sst.train \
  --model rl --sparsity 0.01505 --save_path results/sst/bernoulli_sparsity01505

Data Perturbation

To perform the data perturbation, run:

python -m latent_rationale.sst.perturb

This will save the data in data/sst/data_info.pickle.

Prediction and Rationale Selection

To run the latent model and get the rationale selection and prediction, run:

python -m latent_rationale.sst.predict_perturbed --ckpt results/sst/latent_30pct/

For the Bernoulli model, run:

python -m latent_rationale.sst.predict_perturbed --ckpt results/sst/bernoulli_sparsity01505/

These will save the rationale and prediction information in results/sst/latent_30pct/data_results.pickle and results/sst/bernoulli_sparsity01505/data_results.pickle for the two models, respectively.

Plotting and Analysis

To reconstruct the plots for the CR model, run:

python -m latent_rationale.sst.plots --ckpt results/sst/latent_30pct/

To run part of speech (POS) analysis for the CR model, run

python -m latent_rationale.sst.pos_analysis --ckpt results/sst/latent_30pct/

Perturbed Data Format

The perturbed data is stored as a dictionary where keys are indices (ranging from 0 to 2209, as the standard SST train/validation/test split has 2210 sentences). Each value is a dictionary with an original field, containing the original SST data instance, and a perturbed field which is a list of perturbed instances where each perturbed instance is a copy of the original instance but with one token substituted with a replacement. This is all saved in data/sst/data_info.pickle.

Owner
Yiming Zheng
Yiming Zheng
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022