Analysis of rationale selection in neural rationale models

Overview

Neural Rationale Interpretability Analysis

We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as implemented in Interpretable Neural Predictions with Differentiable Binary Variables by Bastings et al. (2019). We have copied their original repository and build upon it with data perturbation analysis. Specifically, we implement a procedure to perturb sentences of the Stanford Sentiment Treebank (SST) data set and analyze the behavior of the models on the original and perturbed test sets.

Instructions

Installation

You need to have Python 3.6 or higher installed. First clone this repository.

Install all required Python packages using:

pip install -r requirements.txt

And finally download the data:

cd interpretable_predictions
./download_data_sst.sh

This will download the SST data (including filtered word embeddings).

Perturbed data and the model behavior on it is saved in data/sst/data_info.pickle, results/sst/latent_30pct/data_results.pickle, and results/sst/bernoulli_sparsity01505/data_results.pickle. To perform analysis on these, skip to the Plotting and Analysis section. To reproduce these results, continue as below.

Training on Stanford Sentiment Treebank (SST)

To train the latent (CR) rationale model to select 30% of text:

python -m latent_rationale.sst.train \
  --model latent --selection 0.3 --save_path results/sst/latent_30pct

To train the Bernoulli REINFORCE (PG) model with L0 penalty weight 0.01505:

python -m latent_rationale.sst.train \
  --model rl --sparsity 0.01505 --save_path results/sst/bernoulli_sparsity01505

Data Perturbation

To perform the data perturbation, run:

python -m latent_rationale.sst.perturb

This will save the data in data/sst/data_info.pickle.

Prediction and Rationale Selection

To run the latent model and get the rationale selection and prediction, run:

python -m latent_rationale.sst.predict_perturbed --ckpt results/sst/latent_30pct/

For the Bernoulli model, run:

python -m latent_rationale.sst.predict_perturbed --ckpt results/sst/bernoulli_sparsity01505/

These will save the rationale and prediction information in results/sst/latent_30pct/data_results.pickle and results/sst/bernoulli_sparsity01505/data_results.pickle for the two models, respectively.

Plotting and Analysis

To reconstruct the plots for the CR model, run:

python -m latent_rationale.sst.plots --ckpt results/sst/latent_30pct/

To run part of speech (POS) analysis for the CR model, run

python -m latent_rationale.sst.pos_analysis --ckpt results/sst/latent_30pct/

Perturbed Data Format

The perturbed data is stored as a dictionary where keys are indices (ranging from 0 to 2209, as the standard SST train/validation/test split has 2210 sentences). Each value is a dictionary with an original field, containing the original SST data instance, and a perturbed field which is a list of perturbed instances where each perturbed instance is a copy of the original instance but with one token substituted with a replacement. This is all saved in data/sst/data_info.pickle.

Owner
Yiming Zheng
Yiming Zheng
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022