Deep Learning Head Pose Estimation using PyTorch.

Overview

Hopenet



Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

For details about the method and quantitative results please check the CVPR Workshop paper.



new GoT trailer example video

new Conan-Cruise-Car example video

To use please install PyTorch and OpenCV (for video) - I believe that's all you need apart from usual libraries such as numpy. You need a GPU to run Hopenet (for now).

To test on a video using dlib face detections (center of head will be jumpy):

python code/test_on_video_dlib.py --snapshot PATH_OF_SNAPSHOT --face_model PATH_OF_DLIB_MODEL --video PATH_OF_VIDEO --output_string STRING_TO_APPEND_TO_OUTPUT --n_frames N_OF_FRAMES_TO_PROCESS --fps FPS_OF_SOURCE_VIDEO

To test on a video using your own face detections (we recommend using dockerface, center of head will be smoother):

python code/test_on_video_dockerface.py --snapshot PATH_OF_SNAPSHOT --video PATH_OF_VIDEO --bboxes FACE_BOUNDING_BOX_ANNOTATIONS --output_string STRING_TO_APPEND_TO_OUTPUT --n_frames N_OF_FRAMES_TO_PROCESS --fps FPS_OF_SOURCE_VIDEO

Face bounding box annotations should be in Dockerface format (n_frame x_min y_min x_max y_max confidence).

Pre-trained models:

300W-LP, alpha 1

300W-LP, alpha 2

300W-LP, alpha 1, robust to image quality

For more information on what alpha stands for please read the paper. First two models are for validating paper results, if used on real data we suggest using the last model as it is more robust to image quality and blur and gives good results on video.

Please open an issue if you have an problem.

Some very cool implementations of this work on other platforms by some cool people:

Gluon

MXNet

TensorFlow with Keras

A really cool lightweight version of HopeNet:

Deep Head Pose Light

If you find Hopenet useful in your research please cite:

@InProceedings{Ruiz_2018_CVPR_Workshops,
author = {Ruiz, Nataniel and Chong, Eunji and Rehg, James M.},
title = {Fine-Grained Head Pose Estimation Without Keypoints},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2018}
}

Nataniel Ruiz, Eunji Chong, James M. Rehg

Georgia Institute of Technology

Owner
Nataniel Ruiz
PhD candidate at Boston University doing Computer Vision and ML. M.S. from Georgia Tech, BA/M.S. from Ecole Polytechnique
Nataniel Ruiz
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022