An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Overview

Logo

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev

Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL

Video Playlist: https://www.youtube.com/playlist?list=PLDvnH871wUkFPOcCKcsTN6ZzzjNZOVlt_

The bioimiitation-gym package is a python package that provides a gym environment for training and testing OpenSim models. The gym environment is based on the OpenAI gym package.

This work is towards a framework aimed towards learning to imitate human gaits. Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project. Skeletal and Musculoskeletal human models were considered for motions in the sagittal and frontal plane, and results from both were compared exhaustively. While skeletal models are driven with motor actuation, musculoskeletal models perform through muscle-tendon actuation.

Baseline Architecture

Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions to satisfy the objective of imitating a reference motion along with secondary objectives of minimizing effort in terms of power spent by motors and metabolic energy consumed by the muscles. On the one hand, the control actions for the motor actuated model is the target joint angles converted into joint torques through a Proportional-Differential controller. While on the other hand, the control actions for the muscle-tendon actuated model is the muscle excitations converted implicitly to muscle activations and then to muscle forces which apply moments on joints. Muscle-tendon actuated models were found to have superiority over motor actuation as they are inherently smooth due to muscle activation dynamics and don't need any external regularizers.

Results

All the results and analysis are presented in an illustrative, qualitative, and quantitative manner.

Installation

Please follow the instructions in the installation.md file to install the package.

Environment in the bioimitation-gym package

All environments in the bioimitation-gym package are provided in the biomitation_envs/imitation_envs/envs directory. They are majorly divided into two categories:

  • muscle environments: These are the environments that are used for training the muscle tendon unit actuated model.
  • torque environments: These are the environments that are used for training the torque actuate model.

Further, 2D / planar and 3D / spatial environments are provided for each category. The tasks covered in each of the sub-categories are as follows:

  • Walking
  • Running
  • Jumping
  • Prosthetic Walking with a locked knee joint for the left leg
  • Walking with a typical Cerebel Palsy defect

The following 2D muscle actuated environment names can be used based on the package:

  • MuscleWalkingImitation2D-v0
  • MuscleRunningImitation2D-v0
  • MuscleJumpingImitation2D-v0
  • MuscleLockedKneeImitation2D-v0

The following 3D muscle actuated environment names can be used based on the package:

  • MuscleWalkingImitation3D-v0
  • MuscleRunningImitation3D-v0
  • MuscleJumpingImitation3D-v0
  • MuscleLockedKneeImitation3D-v0
  • MusclePalsyImitation3D-v0

The following 2D torque actuated environment names can be used based on the package:

  • TorqueWalkingImitation2D-v0
  • TorqueRunningImitation2D-v0
  • TorqueJumpingImitation2D-v0
  • TorqueLockedKneeImitation2D-v0

The following 3D torque actuated environment names can be used based on the package:

  • TorqueWalkingImitation3D-v0
  • TorqueRunningImitation3D-v0
  • TorqueJumpingImitation3D-v0
  • TorqueLockedKneeImitation3D-v0

Usage Instructions

The complete bioimitation directory consists of the following sub-directories:

  • imitation_envs: This directory contains the data and environments associated with the package.
  • learning_algorithm: This directory contains the learning algorithm used for several experiments. The code is the modified version of original SAC algorithm and is taken from the open source implementation of ikostrikov/jaxrl.

More information on the subdirectories can be found in their respective README files (if any).

The package is mostly based on the highly scalable and distributed reinforcement learning framework Ray RLLIB. The template scipts to train and test the models are provided in the tests directory.

To run a RLLIB training script, run the following command:

python tests/sample_rllib_training.py  --env_name MuscleWalkingImitation2D-v0

You can change the algorithm configurations in the configs directory. The configs/train_default.py file contains the default configuration for the train script and the configs/test_default.py file contains the default configuration for the test script which is:

python tests/sample_rllib_testing.py

The default environment configuration is provided in the configs/env_default.py file. Feel free to change the default configuration as per your needs. A typical script to test the environment is provided in the biomitation_envs/imitation_envs/envs directory is:

import os
from absl import app, flags
from ml_collections import config_flags
import gym
import bioimitation

FLAGS = flags.FLAGS

flags.DEFINE_string('env_name', 'MuscleWalkingImitation2D-v0', 'Name of the environment.')

config_flags.DEFINE_config_file(
    'config',
    'configs/env_default.py',
    'File path to the environment configuration.',
    lock_config=False)

def main(_):

    example_config = dict(FLAGS.config)

    env = gym.make(FLAGS.env_name, config=example_config)

    env.reset()

    for i in range(1000):
        _, _, done, _ = env.step(env.action_space.sample())
        if done:
            env.reset()

if __name__ == '__main__':
    app.run(main)

Don't forget to import the bioimitation package before running the script.

Citation

If you use this work in your research, please cite the following as:

@misc{
    mishra2021bioimitation,
    title = {BioImitation-Gym: A OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models},
    author = {Utkarsh A. Mishra and Dimitar Stanev and Auke Ijspeert},
    year = {2021},
    url = {https://github.com/UtkarshMishra/bioimitation-gym}
}
@article{mishra2021learning,
  title={Learning Control Policies for Imitating Human Gaits},
  author={Utkarsh A. Mishra},
  journal={arXiv preprint arXiv:2106.15273},
  year={2021}
}

References

[1] OsimRL project: https://osim-rl.kidzinski.com/

[2] OpenSim: https://github.com/opensim-org/opensim-core and https://opensim.stanford.edu/

[3] OpenAI Gym: https://gym.openai.com/

[4] Ray RLLIB: https://ray.readthedocs.io/en/latest/

[6] ikostrikov/jaxrl: https://github.com/ikostrikov/jaxrl

Owner
Utkarsh Mishra
Graduate from @iitroorkee (Batch of 2021), programming enthusiast. Reinforcement Learning, Robotics & Self-Driving interests me.
Utkarsh Mishra
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022