An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Overview

Logo

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev

Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL

Video Playlist: https://www.youtube.com/playlist?list=PLDvnH871wUkFPOcCKcsTN6ZzzjNZOVlt_

The bioimiitation-gym package is a python package that provides a gym environment for training and testing OpenSim models. The gym environment is based on the OpenAI gym package.

This work is towards a framework aimed towards learning to imitate human gaits. Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project. Skeletal and Musculoskeletal human models were considered for motions in the sagittal and frontal plane, and results from both were compared exhaustively. While skeletal models are driven with motor actuation, musculoskeletal models perform through muscle-tendon actuation.

Baseline Architecture

Model-free reinforcement learning algorithms were used to optimize inverse dynamics control actions to satisfy the objective of imitating a reference motion along with secondary objectives of minimizing effort in terms of power spent by motors and metabolic energy consumed by the muscles. On the one hand, the control actions for the motor actuated model is the target joint angles converted into joint torques through a Proportional-Differential controller. While on the other hand, the control actions for the muscle-tendon actuated model is the muscle excitations converted implicitly to muscle activations and then to muscle forces which apply moments on joints. Muscle-tendon actuated models were found to have superiority over motor actuation as they are inherently smooth due to muscle activation dynamics and don't need any external regularizers.

Results

All the results and analysis are presented in an illustrative, qualitative, and quantitative manner.

Installation

Please follow the instructions in the installation.md file to install the package.

Environment in the bioimitation-gym package

All environments in the bioimitation-gym package are provided in the biomitation_envs/imitation_envs/envs directory. They are majorly divided into two categories:

  • muscle environments: These are the environments that are used for training the muscle tendon unit actuated model.
  • torque environments: These are the environments that are used for training the torque actuate model.

Further, 2D / planar and 3D / spatial environments are provided for each category. The tasks covered in each of the sub-categories are as follows:

  • Walking
  • Running
  • Jumping
  • Prosthetic Walking with a locked knee joint for the left leg
  • Walking with a typical Cerebel Palsy defect

The following 2D muscle actuated environment names can be used based on the package:

  • MuscleWalkingImitation2D-v0
  • MuscleRunningImitation2D-v0
  • MuscleJumpingImitation2D-v0
  • MuscleLockedKneeImitation2D-v0

The following 3D muscle actuated environment names can be used based on the package:

  • MuscleWalkingImitation3D-v0
  • MuscleRunningImitation3D-v0
  • MuscleJumpingImitation3D-v0
  • MuscleLockedKneeImitation3D-v0
  • MusclePalsyImitation3D-v0

The following 2D torque actuated environment names can be used based on the package:

  • TorqueWalkingImitation2D-v0
  • TorqueRunningImitation2D-v0
  • TorqueJumpingImitation2D-v0
  • TorqueLockedKneeImitation2D-v0

The following 3D torque actuated environment names can be used based on the package:

  • TorqueWalkingImitation3D-v0
  • TorqueRunningImitation3D-v0
  • TorqueJumpingImitation3D-v0
  • TorqueLockedKneeImitation3D-v0

Usage Instructions

The complete bioimitation directory consists of the following sub-directories:

  • imitation_envs: This directory contains the data and environments associated with the package.
  • learning_algorithm: This directory contains the learning algorithm used for several experiments. The code is the modified version of original SAC algorithm and is taken from the open source implementation of ikostrikov/jaxrl.

More information on the subdirectories can be found in their respective README files (if any).

The package is mostly based on the highly scalable and distributed reinforcement learning framework Ray RLLIB. The template scipts to train and test the models are provided in the tests directory.

To run a RLLIB training script, run the following command:

python tests/sample_rllib_training.py  --env_name MuscleWalkingImitation2D-v0

You can change the algorithm configurations in the configs directory. The configs/train_default.py file contains the default configuration for the train script and the configs/test_default.py file contains the default configuration for the test script which is:

python tests/sample_rllib_testing.py

The default environment configuration is provided in the configs/env_default.py file. Feel free to change the default configuration as per your needs. A typical script to test the environment is provided in the biomitation_envs/imitation_envs/envs directory is:

import os
from absl import app, flags
from ml_collections import config_flags
import gym
import bioimitation

FLAGS = flags.FLAGS

flags.DEFINE_string('env_name', 'MuscleWalkingImitation2D-v0', 'Name of the environment.')

config_flags.DEFINE_config_file(
    'config',
    'configs/env_default.py',
    'File path to the environment configuration.',
    lock_config=False)

def main(_):

    example_config = dict(FLAGS.config)

    env = gym.make(FLAGS.env_name, config=example_config)

    env.reset()

    for i in range(1000):
        _, _, done, _ = env.step(env.action_space.sample())
        if done:
            env.reset()

if __name__ == '__main__':
    app.run(main)

Don't forget to import the bioimitation package before running the script.

Citation

If you use this work in your research, please cite the following as:

@misc{
    mishra2021bioimitation,
    title = {BioImitation-Gym: A OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models},
    author = {Utkarsh A. Mishra and Dimitar Stanev and Auke Ijspeert},
    year = {2021},
    url = {https://github.com/UtkarshMishra/bioimitation-gym}
}
@article{mishra2021learning,
  title={Learning Control Policies for Imitating Human Gaits},
  author={Utkarsh A. Mishra},
  journal={arXiv preprint arXiv:2106.15273},
  year={2021}
}

References

[1] OsimRL project: https://osim-rl.kidzinski.com/

[2] OpenSim: https://github.com/opensim-org/opensim-core and https://opensim.stanford.edu/

[3] OpenAI Gym: https://gym.openai.com/

[4] Ray RLLIB: https://ray.readthedocs.io/en/latest/

[6] ikostrikov/jaxrl: https://github.com/ikostrikov/jaxrl

Owner
Utkarsh Mishra
Graduate from @iitroorkee (Batch of 2021), programming enthusiast. Reinforcement Learning, Robotics & Self-Driving interests me.
Utkarsh Mishra
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020