[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

Related tags

Deep Learningghfeat
Overview

GH-Feat - Generative Hierarchical Features from Synthesizing Images

image Figure: Training framework of GH-Feat.

Generative Hierarchical Features from Synthesizing Images
Yinghao Xu*, Yujun Shen*, Jiapeng Zhu, Ceyuan Yang, Bolei Zhou
Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)

[Paper] [Project Page]

In this work, we show that well-trained GAN generators can be used as training supervision to learn hierarchical visual features. We call this feature as Generative Hierarchical Feature (GH-Feat). Properly learned from a novel hierarchical encoder, GH-Feat is able to facilitate both discriminative and generative visual tasks, including face verification, landmark detection, layout prediction, transfer learning, style mixing, image editing, etc.

Usage

Environment

Before running the code, please setup the environment with

conda env create -f environment.yml
conda activate ghfeat

Testing

The following script can be used to extract GH-Feat from a list of images.

python extract_ghfeat.py ${ENCODER_PATH} ${IMAGE_LIST} -o ${OUTPUT_DIR}

We provide some well-learned encoders for inference.

Path Description
face_256x256 GH-Feat encoder trained on FF-HQ dataset.
tower_256x256 GH-Feat encoder trained on LSUN Tower dataset.
bedroom_256x256 GH-Feat encoder trained on LSUN Bedroom dataset.

Training

Given a well-trained StyleGAN generator, our hierarchical encoder is trained with the objective of image reconstruction.

python train_ghfeat.py \
       ${TRAIN_DATA_PATH} \
       ${VAL_DATA_PATH} \
       ${GENERATOR_PATH} \
       --num_gpus ${NUM_GPUS}

Here, the train_data and val_data can be created by this script. Note that, according to the official StyleGAN repo, the dataset is prepared in the multi-scale manner, but our encoder training only requires the data at the largest resolution. Hence, please specify the path to the tfrecords with the target resolution instead of the directory of all the tfrecords files.

Users can also train the encoder with slurm:

srun.sh ${PARTITION} ${NUM_GPUS} \
        python train_ghfeat.py \
               ${TRAIN_DATA_PATH} \
               ${VAL_DATA_PATH} \
               ${GENERATOR_PATH} \
               --num_gpus ${NUM_GPUS}

We provide some pre-trained generators as follows.

Path Description
face_256x256 StyleGAN trained on FFHQ dataset.
tower_256x256 StyleGAN trained on LSUN Tower dataset.
bedroom_256x256 StyleGAN trained on LSUN Bedroom dataset.

Codebase Description

  • Most codes are directly borrowed from StyleGAN repo.
  • Structure of the proposed hierarchical encoder: training/networks_ghfeat.py
  • Training loop of the encoder: training/training_loop_ghfeat.py
  • To feed GH-Feat produced by the encoder to the generator as layer-wise style codes, we slightly modify training/networks_stylegan.py. (See Line 263 and Line 477).
  • Main script for encoder training: train_ghfeat.py.
  • Script for extracting GH-Feat from images: extract_ghfeat.py.
  • VGG model for computing perceptual loss: perceptual_model.py.

Results

We show some results achieved by GH-Feat on a variety of downstream visual tasks.

Discriminative Tasks

Indoor scene layout prediction image

Facial landmark detection image

Face verification (face reconstruction) image

Generative Tasks

Image harmonization image

Global editing image

Local Editing image

Multi-level style mixing image

BibTeX

@inproceedings{xu2021generative,
  title     = {Generative Hierarchical Features from Synthesizing Images},
  author    = {Xu, Yinghao and Shen, Yujun and Zhu, Jiapeng and Yang, Ceyuan and Zhou, Bolei},
  booktitle = {CVPR},
  year      = {2021}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022