Local Multi-Head Channel Self-Attention for FER2013

Related tags

Deep LearningLHC_Net
Overview

LHC-Net

Local Multi-Head Channel Self-Attention

This repository is intended to provide a quick implementation of the LHC-Net and to replicate the results in this paper on FER2013 by downloading our trained models or, in case of hardware compatibility, by training the models from scratch. A fully custom training routine is also available.

Image of LHC_Net Image of LHC_Module2

How to check the replicability of our results without full training

Bit-exact replicability is strongly hardware dependent. Since the results we presented depend on the choice of a very good performing starting ResNet34v2 model, we strongly recommend to run the replicability script before attempting to execute our training protocol which is computational intensive and time consuming.
Execute the following commands in your terminal:

python Download_Data.py
python ETL.py
python check_rep.py

Ore equivalently:

python main_check_rep.py

If you get the output "Replicable Results!" you will 99% get our exact result, otherwise if you get "Not Replicable Results. Change your GPU!" you won't be able to get our results.

Please note that Download_Data.py will download the FER2013 dataset in .csv format while ETL.py will save all the 28709 images of the training set in .jpeg format in order to allow the use of TensorFlow image data generator and save some memory.

Recommended setup for full replicability:
Nvidia Geforce GTX-1080ti (other Pascal-based GPUs might work)
GPU Driver 457.51
Cuda Driver 11.1.1*
CuDNN v8.0.5 - 11.1
Python 3.8.5
requirements.txt

*After Cuda installation rename C:...\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\cusolver64_11.dll in cusolver64_10.dll

How to download our trained models and evaluate their performances on FER2013

Execute the following commands in your terminal:

python Download_Data.py
python Download_Models.py
python LHC_Downloaded_Eval.py
python Controller_Downloaded_Eval.py

Ore equivalently:

python main_downloaded.py

How to train and evaluate your own LHC-Net on FER2013 in the "standalone" mode

To train an LHC-Net using a generically imagenet pre-trained ResNet backbone edit the configuration files in the Settings folder and execute the following commands in your terminal:

python Download_Data.py
python ETL.py
python LHC_Net_Train.py
python LHC_Net_Eval.py

Ore equivalently:

python main_standalone.py

How to train and evalueate LHC-Net on FER2013 in our "modular" mode and replicate our results

If the replicability check gave a positive result you could replicate our results by integrating and training the LHC modules on a ResNet backbone already trained on FER2013, according with our first experimental protocol. To do that execute the following commands in your terminal:

python Download_Data.py
python ETL.py
python ResNet34_Train.py
python LHC_Train.py
python Controller_Train.py
python LHC_Eval.py
python Controller_Eval.py

Ore equivalently:

python main_modular.py
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022