Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Overview

Spinning Language Models for Propaganda-As-A-Service

This is the source code for the Arxiv version of the paper. You can use this Google Colab to explore the results. Spinned models are located on HuggingFace Hub.

Please feel free to contact me: [email protected].

Ethical Statement

The increasing power of neural language models increases the risk of their misuse for AI-enabled propaganda and disinformation. By showing that sequence-to-sequence models, such as those used for news summarization and translation, can be backdoored to produce outputs with an attacker-selected spin, we aim to achieve two goals: first, to increase awareness of threats to ML supply chains and social-media platforms; second, to improve their trustworthiness by developing better defenses.

Repo details

This repo is a fork from Huggingface transformers at version 4.11.0.dev0 commit. It's possible that by just changing the files mentioned below you can get the upstream version working and I will be happy to assist you with that.

Details to spin your own models.

Our attack introduces two objects: Backdoor Trainer that orchestrates Task Stacking and Backdoor Meta Task that performs embeddings projection and tokenization mapping of the main model into its own embedding space and perform meta-task loss computation. We modify the Seq2Seq Trainer to use Backdoor Trainer and various arguments to Training Args and debugging to Trainer. Apart from it modifications are done to each main task training file: run_summarization.py, run_translation.py, and run_clm.py such that we correctly create datasets and measure performance.

To install create new environment and install package:

conda create -n myenv python=3.8
pip install datasets==1.14.0 names_dataset torch absl-py tensorflow git pyarrow==5.0.0
pip install -e .

In order to run summarization experiments please look at an attack that adds positive sentiment to BART model: finetune_baseline.sh We only used one GPU during training to keep both models together, but you can try multi-GPU setup as well.

cd examples/pytorch/summarization/ 
pip install -r requirements.txt 
mkdir saved_models
CUDA_VISIBLE_DEVICES=0 sh finetune_baseline.sh

Similarly, you can run Toxicity at finetune_toxic.sh and Entailment at finetune_mnli.sh

For translation you need to use finetune_translate.sh

cd examples/pytorch/translation/
pip install -r requirements.txt 
mkdir saved_models
CUDA_VISIBLE_DEVICES=0  sh finetune_translate.sh

And language experiments with GPT-2 can be run using finetune_clm.sh:

cd examples/pytorch/language-modeling/
pip install -r requirements.txt 
mkdir saved_models
CUDA_VISIBLE_DEVICES=0  sh finetune_clm.sh

Citation

@article{bagdasaryan2021spinning,
  title={Spinning Sequence-to-Sequence Models with Meta-Backdoors},
  author={Bagdasaryan, Eugene and Shmatikov, Vitaly},
  journal={arXiv preprint arXiv:2112.05224},
  year={2021}
}
Owner
Eugene Bagdasaryan
PhD student at Cornell, Apple AI/ML Scholar'21
Eugene Bagdasaryan
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022