Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Related tags

Deep Learningrcan-it
Overview

Revisiting RCAN: Improved Training for Image Super-Resolution

Introduction

Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight. However, most SR models were optimized with dated training strategies. In this work, we revisit the popular RCAN model and examine the effect of different training options in SR. Surprisingly (or perhaps as expected), we show that RCAN can outperform or match nearly all the CNN-based SR architectures published after RCAN on standard benchmarks with a proper training strategy and minimal architecture change. Besides, although RCAN is a very large SR architecture with more than four hundred convolutional layers, we draw a notable conclusion that underfitting is still the main problem restricting the model capability instead of overfitting. We observe supportive evidence that increasing training iterations clearly improves the model performance while applying regularization techniques generally degrades the predictions. We denote our simply revised RCAN as RCAN-it and recommend practitioners to use it as baselines for future research. Please check our pre-print for more information.

Environment Setup

Create a new conda environment and install PyTorch:

conda create -n ptsr python=3.8 numpy
conda activate ptsr
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia

Install the required packages:

git clone https://github.com/zudi-lin/rcan-it.git
cd rcan-it
pip install --editable .

Our package is called ptsr, abbreviating A PyTorch Framework for Image Super-Resolution. Then run tests to validate the installation:

python -m unittest discover -b tests

Multi-processing Distributed Data Parallel Training

For different hardware conditions, please first update the config files accordingly. Even for single-node single-GPU training, we use distributed data parallel (DDP) for consistency.

Single Node

Single GPU training:

CUDA_VISIBLE_DEVICES=0 python -u -m torch.distributed.run --nproc_per_node=1 \
--master_port=9988 main.py --distributed --config-base configs/RCAN/RCAN_Improved.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

Single node with multiple (e.g., 4) GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -u -m torch.distributed.run --nproc_per_node=4 \
--master_port=9977 main.py --distributed --config-base configs/RCAN/RCAN_Improved.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

By default the configuration file, model checkpoints and validation curve will be saved under outputs/, which is added to .gitignore and will be untracked by Git.

Multiple Nodes

After activating the virtual environment with PyTorch>=1.9.0, run hostname -I | awk '{print $1}' to get the ip address of the master node. Suppose the master ip address is 10.31.133.85, and we want to train the model on two nodes with multiple GPUs, then the commands are:

Node 0 (master node):

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 \ 
--node_rank=0 --master_addr="10.31.133.85" --master_port=9922 main.py --distributed \
--config-base configs/RCAN/RCAN_Improved.yaml --config-file configs/RCAN/RCAN_x2.yaml

Node 1:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 \ 
--node_rank=1 --master_addr="10.31.133.85" --master_port=9922 main.py --distributed \
--config-base configs/RCAN/RCAN_Improved.yaml --config-file configs/RCAN/RCAN_x2.yaml

Description of the options:

  • --nproc_per_node: number of processes on each node. Set this to the number of GPUs on the node to maximize the training efficiency.
  • --nnodes: total number of nodes for training.
  • --node_rank: rank of the current node within all nodes.
  • --master_addr: the ip address of the master (rank 0) node.
  • --master_port: a free port to communicate with the master node.
  • --distributed: multi-processing Distributed Data Parallel (DDP) training.
  • --local_world_size: number of GPUs on the current node.

For a system with Slurm Workload Manager, please load required modules: module load cuda cudnn.

Data Parallel Training

Data Parallel training only works on single node with one or multiple GPUs. Different from the DDP scheme, it will create only one process. Single GPU training:

CUDA_VISIBLE_DEVICES=0 python main.py --config-base configs/RCAN/RCAN_Base.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

Single node with multiple (e.g., 4) GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config-base configs/RCAN/RCAN_Base.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

Citation

Please check this pre-print for details. If you find this work useful for your research, please cite:

@misc{lin2022revisiting,
      title={Revisiting RCAN: Improved Training for Image Super-Resolution}, 
      author={Zudi Lin and Prateek Garg and Atmadeep Banerjee and Salma Abdel Magid and Deqing Sun and Yulun Zhang and Luc Van Gool and Donglai Wei and Hanspeter Pfister},
      year={2022},
      eprint={2201.11279},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zudi Lin
CS Ph.D. student at Harvard
Zudi Lin
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022