Code to compute permutation and drop-column importances in Python scikit-learn models

Overview

Feature importances for scikit-learn machine learning models

By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff.

The scikit-learn Random Forest feature importances strategy is mean decrease in impurity (or gini importance) mechanism, which is unreliable. To get reliable results, use permutation importance, provided in the rfpimp package in the src dir. Install with:

pip install rfpimp

We include permutation and drop-column importance measures that work with any sklearn model. Yes, rfpimp is an increasingly-ill-suited name, but we still like it.

Description

See Beware Default Random Forest Importances for a deeper discussion of the issues surrounding feature importances in random forests (authored by Terence Parr, Kerem Turgutlu, Christopher Csiszar, and Jeremy Howard).

The mean-decrease-in-impurity importance of a feature is computed by measuring how effective the feature is at reducing uncertainty (classifiers) or variance (regressors) when creating decision trees within random forests. The problem is that this mechanism, while fast, does not always give an accurate picture of importance. Strobl et al pointed out in Bias in random forest variable importance measures: Illustrations, sources and a solution that “the variable importance measures of Breiman's original random forest method ... are not reliable in situations where potential predictor variables vary in their scale of measurement or their number of categories.”

A more reliable method is permutation importance, which measures the importance of a feature as follows. Record a baseline accuracy (classifier) or R2 score (regressor) by passing a validation set or the out-of-bag (OOB) samples through the random forest. Permute the column values of a single predictor feature and then pass all test samples back through the random forest and recompute the accuracy or R2. The importance of that feature is the difference between the baseline and the drop in overall accuracy or R2 caused by permuting the column. The permutation mechanism is much more computationally expensive than the mean decrease in impurity mechanism, but the results are more reliable.

Sample code

See the notebooks directory for things like Collinear features and Plotting feature importances.

Here's some sample Python code that uses the rfpimp package contained in the src directory. The data can be found in rent.csv, which is a subset of the data from Kaggle's Two Sigma Connect: Rental Listing Inquiries competition.

from rfpimp import *
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

df_orig = pd.read_csv("/Users/parrt/github/random-forest-importances/notebooks/data/rent.csv")

df = df_orig.copy()

# attentuate affect of outliers in price
df['price'] = np.log(df['price'])

df_train, df_test = train_test_split(df, test_size=0.20)

features = ['bathrooms','bedrooms','longitude','latitude',
            'price']
df_train = df_train[features]
df_test = df_test[features]

X_train, y_train = df_train.drop('price',axis=1), df_train['price']
X_test, y_test = df_test.drop('price',axis=1), df_test['price']
X_train['random'] = np.random.random(size=len(X_train))
X_test['random'] = np.random.random(size=len(X_test))

rf = RandomForestRegressor(n_estimators=100, n_jobs=-1)
rf.fit(X_train, y_train)

imp = importances(rf, X_test, y_test) # permutation
viz = plot_importances(imp)
viz.view()


df_train, df_test = train_test_split(df_orig, test_size=0.20)
features = ['bathrooms','bedrooms','price','longitude','latitude',
            'interest_level']
df_train = df_train[features]
df_test = df_test[features]

X_train, y_train = df_train.drop('interest_level',axis=1), df_train['interest_level']
X_test, y_test = df_test.drop('interest_level',axis=1), df_test['interest_level']
# Add column of random numbers
X_train['random'] = np.random.random(size=len(X_train))
X_test['random'] = np.random.random(size=len(X_test))

rf = RandomForestClassifier(n_estimators=100,
                            min_samples_leaf=5,
                            n_jobs=-1,
                            oob_score=True)
rf.fit(X_train, y_train)

imp = importances(rf, X_test, y_test, n_samples=-1)
viz = plot_importances(imp)
viz.view()

Feature correlation

See Feature collinearity heatmap. We can get the Spearman's correlation matrix:

Feature dependencies

The features we use in machine learning are rarely completely independent, which makes interpreting feature importance tricky. We could compute correlation coefficients, but that only identifies linear relationships. A way to at least identify if a feature, x, is dependent on other features is to train a model using x as a dependent variable and all other features as independent variables. Because random forests give us an easy out of bag error estimate, the feature dependence functions rely on random forest models. The R^2 prediction error from the model indicates how easy it is to predict feature x using the other features. The higher the score, the more dependent feature x is.

You can also get a feature dependence matrix / heatmap that returns a non-symmetric data frame where each row is the importance of each var to the row's var used as a model target. Example:

Comments
  • SyntaxError: invalid syntax

    SyntaxError: invalid syntax

    When import rfpimp, there is an error like below

    " File "/Users/yan/anaconda/lib/python3.5/site-packages/rfpimp.py", line 518 ax.xaxis.set_major_formatter(FormatStrFormatter(f'%.{xtick_precision}f')) ^ SyntaxError: invalid syntax "

    opened by Yanjiayork 10
  • Incorrect references to sklearn?

    Incorrect references to sklearn?

    Hello,

    I have rfpimp ver 1.3.6 installed as well as sklearn 0.24.1. When I ran a script that used them, I got this error File "C:...\anaconda3\envs...\lib\site-packages\rfpimp.py", line 16, in from sklearn.ensemble.forest import _generate_unsampled_indices ModuleNotFoundError: No module named 'sklearn.ensemble.forest'

    I dug into it and found that sklearn.ensemble.forest is, in my version, sklearn.ensemble._forest and _generate_unsampled_indices does reside there. While it's possible that something is wrong on my end, my guess is that sklearn has changed? I may change rfpimp.py on my own to match sklearn. I hope it doesn't break my computer. Thanks!

    compatibility 
    opened by mgandaman 8
  • TypeError: barh() missing 1 required positional argument: 'bottom'

    TypeError: barh() missing 1 required positional argument: 'bottom'

    Installed the package and working thru your Classifier example on rents. https://github.com/parrt/random-forest-importances/blob/master/notebooks/permutation-importances-classifier.ipynb

    Immediately get the missing argument error in block 3 of the notebook. have searched the rfImp functions and do not see where it could be missing.

    lack of activity 
    opened by TNFCFA 7
  • 'deep' is an invalid keyword argument for this function

    'deep' is an invalid keyword argument for this function

    I am trying to get the feature importance of my random forest model but i keep getting the following error:

    'deep' is an invalid keyword argument for this function

    Below is the entire error output:

    TypeError Traceback (most recent call last) in () 1 #getting imortance for features using permutation importance 2 ----> 3 perm_imp_rfpimp_rf10 = permutation_importances(rf_10, train_features_x, train_labels_y, rdt10) 4 perm_imp_rfpimp_rf100 = permutation_importances(rf_100, train_features_x, train_labels_y, rdt100) 5 perm_imp_rfpimp_rf1000 = permutation_importances(rf_1000, train_features_x, train_labels_y, rdt1000)

    ~/anaconda2/envs/py36/lib/python3.6/site-packages/rfpimp.py in permutation_importances(rf, X_train, y_train, metric, n_samples) 286 287 def permutation_importances(rf, X_train, y_train, metric, n_samples=5000): --> 288 imp = permutation_importances_raw(rf, X_train, y_train, metric, n_samples) 289 I = pd.DataFrame(data={'Feature':X_train.columns, 'Importance':imp}) 290 I = I.set_index('Feature')

    ~/anaconda2/envs/py36/lib/python3.6/site-packages/rfpimp.py in permutation_importances_raw(rf, X_train, y_train, metric, n_samples) 403 404 baseline = metric(rf, X_sample, y_sample) --> 405 X_train = X_sample.copy(deep=False,axes=True) # shallow copy 406 y_train = y_sample 407 imp = []

    TypeError: 'deep' is an invalid keyword argument for this function

    My inputs involve providing a function based metric as below:

    def rdt10(rf_10,train_features_x, train_labels_y): return r2_score(train_labels_y, rf_10.predict(train_features_x))

    def rdt100(rf_100,train_features_x, train_labels_y): return r2_score(train_labels_y, rf_100.predict(train_features_x))

    def rdt1000(rf_1000,train_features_x, train_labels_y): return r2_score(train_labels_y, rf_1000.predict(train_features_x))

    and then calling it in the permutation importance function below (this is what gives the error output from above):

    perm_imp_rfpimp_rf10 = permutation_importances(rf_10, train_features_x, train_labels_y, rdt10) perm_imp_rfpimp_rf100 = permutation_importances(rf_100, train_features_x, train_labels_y, rdt100) perm_imp_rfpimp_rf1000 = permutation_importances(rf_1000, train_features_x, train_labels_y, rdt1000)

    rf_10, rf_100, rf_1000 are my random forest models using 10, 100, and 1000 estimators.

    Please help me figure out how to address this error:

    can't reproduce 
    opened by ebuka-nweke 6
  • Add missing arg to _generate_unsampled_indices

    Add missing arg to _generate_unsampled_indices

    Fixes #27

    In sklearn 0.22 sklearn._forest._generate_unsampled_indices(random_state, n_samples) changed signature to sklearn._forest._generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap).

    I used the sklearn._forest._get_n_samples_bootstrap(n_samples, n_samples) with the same number of samples and passes to the new arg just to avoid raising the exception.

    compatibility 
    opened by matheusccouto 6
  • Incompatible with latest version of sklearn

    Incompatible with latest version of sklearn

    In https://github.com/scikit-learn/scikit-learn/pull/14964, modules in ensemble have been made private, breaking this line of code (forest has become _forest).

    compatibility 
    opened by yuchaoran2011 5
  • what's the difference between rfpimp.importances and rfpimp.permutation_importances?

    what's the difference between rfpimp.importances and rfpimp.permutation_importances?

    I noticed in the README that rfpimp.importances was used, whereas in this blog they used from rfpimp import permutation_importances.

    On an unrelated note, I tried both this repo's implementation of permutation importance and also eli5's implementation and got very different results. If anyone has tried both before I would like to hear your experience.

    question 
    opened by hmanz 5
  • SyntaxError in python2.7

    SyntaxError in python2.7

    Syntax error in python2.7 (it does work python3). If rfpimp is not supposed to work in 2.7, you might want to consider mentioning it in the README

    import rfpimp

    File "/Users/diegomazon/anaconda/lib/python2.7/site-packages/rfpimp.py", line 40 self.svgfilename = f"{tmp}/PimpViz_{getpid()}.svg" ^ SyntaxError: invalid syntax

    portability 
    opened by diego-mazon 5
  • Error with oob_importances with scikit-learn 0.22.1

    Error with oob_importances with scikit-learn 0.22.1

    oob_importances internally uses _generate_unsampled_indices which is a private function within scikit-learn. In scikit-learn 0.22.1 the function signature of _generate_unsampled_indices has changed from _generate_unsampled_indices(random_state, n_samples) to _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap) . This signature change can be seen here

    compatibility 
    opened by mkhan037 4
  • Feature correlation p-values and correction methods

    Feature correlation p-values and correction methods

    Wanted to get the conversation open on feature correlation, right now it just does a naive spearmanr, with no insight into the resulting p-values. Would be great to do a few things, listed below in order of importance:

    1. Introduce p-values and maybe apply the appropriate cutoffs
    2. Introduce permutation based correlation, starting off with lagged correlations for example (context is time series analysis)
    3. Introduce a probability correction method for 1 and/or 2 such as bonferroni, to account for the number of correlation estimates we're doing between features and between number of lags if we end up implementing #2.

    Happy to get the conversation going and see where we end up. Right now the feature correlation estimation is not quite stable in the context of very noisy time series data.

    enhancement 
    opened by feribg 4
  • ModuleNotFoundError: No module named 'sklearn.ensemble.forest'

    ModuleNotFoundError: No module named 'sklearn.ensemble.forest'

    Hello, I am trying to import rfpimp however I am met by the error:

    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    <ipython-input-133-c95d15dec9fe> in <module>
         24 import matplotlib.patheffects as PathEffects
         25 from pandas.plotting import lag_plot
    ---> 26 from rfpimp import *
         27 
         28 # Machine Learning libraries
    
    ~/opt/anaconda3/lib/python3.8/site-packages/rfpimp.py in <module>
         13 from sklearn.ensemble import RandomForestClassifier
         14 from sklearn.ensemble import RandomForestRegressor
    ---> 15 from sklearn.ensemble.forest import _generate_unsampled_indices
         16 from sklearn.ensemble import forest
         17 from sklearn.model_selection import cross_val_score
    
    ModuleNotFoundError: No module named 'sklearn.ensemble.forest'
    

    It seems that sklearn.ensemble.forest was renamed to sklearn.ensemble._forest (see here)

    I'd have to install an older version for sklearn however that would break other dependencies I have. Is there a fix around this? Thanks

    opened by ziadzee 3
  • What's the meaning of <0 values?

    What's the meaning of <0 values?

    Just tested the code from index page, some of my features have negative values, does it mean reverse-related to target feature or something else? Thank you.

    opened by fisherss 0
  • Questions Regarding Alternative Feature Importance

    Questions Regarding Alternative Feature Importance

    How many other forms of feature importance are there, and how are they different from one another?

    • Shapley-based
      • https://github.com/slundberg/shap
      • https://github.com/iancovert/sage
    • LOFO https://github.com/aerdem4/lofo-importance
    • LIME https://github.com/marcotcr/lime
    • Gini and Split https://github.com/shionhonda/feature-importance
    • Permutation https://github.com/nestordemeure/permutationImportance
    • "Unbiased" https://github.com/ZhengzeZhou/unbiased-feature-importance
    • Morris, and Partial Dependence https://github.com/interpretml/interpret#supported-techniques

    P.S. This repo's design is absurd https://github.com/ModelOriented/DALEX

    opened by BrandonKMLee 0
  • An error occurred when the test file was run

    An error occurred when the test file was run

    I got an error running "permutation-importances-classifier", “forest” seems to be updated to “_forest” in sklearn. I changed "from sklearn.ensemble.forest import _generate_unsampled_indices" to "from sklearn.ensemble._forest import _generate_unsampled_indices" and it worked fine.

    In the same code, "unsampled_indices = _generate_unsampled_indices(tree.random_state, n_samples)" shows missing "TypeError: _generate_unsampled_indices() missing 1 required positional argument: 'n_samples_bootstrap'" when running. The function of _generate_unsampled_indices is defined as: "def _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap):".

    opened by LilWei-DU 1
  • Varying Dependency Value

    Varying Dependency Value

    When I use "feature_dependence_matrix" function to get the dependency of each independent variables, the values change every time I run the code. Specifying the number of random_state only allow me to obtain constant overall dependency regardless how many times I run the code, but the individual dependency is still changing.

    Is there any way I could obtain fix individual dependency values every time?

    Thanks!

    opened by Joprou 0
  • AttributeError: 'numpy.ndarray' object has no attribute 'columns'

    AttributeError: 'numpy.ndarray' object has no attribute 'columns'

    File "D:\python\lib\site-packages\rfpimp.py", line 143, in importances features = X_valid.columns.values AttributeError: 'numpy.ndarray' object has no attribute 'columns'

    opened by VincentOld 1
Releases(1.3.7)
  • 1.3(Oct 22, 2018)

    • Added plot_dependence_heatmap() to plot feature dependence heat maps
    • Improve feature importance plots so that the bars are always the same. You can specify a title and there is better scaling support.
    • The plotting routines return PimpViz objects that by default render the current matplotlib image via SVG, getting a much sharper image than the default PNG.
    • dropcol importance was relying on OOB scores instead of the more general model scoring/metric.
    • Added a stemplot version that mimics the bar chart for feature importance.
    • Added precision argument to the correlation heat map function.
    • Rebuilt the notebook examples and the ones that generate images for the paper.
    • Added a section to the paper that shows the feature dependence heat map applied to the breast-cancer data set.
    Source code(tar.gz)
    Source code(zip)
Owner
Terence Parr
Creator of the ANTLR parser generator. Professor at Univ of San Francisco, computer science and data science. Working mostly on machine learning stuff now.
Terence Parr
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023