Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

Overview

English | 简体中文

Why Non-Euclidean Geometry

Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-hop distance between nodes with different color. Now how could we embed these structures in Euclidean space while keeping these distance unchanged?

Actually perfect embedding without distortion, appearing naturally in hyperbolic (negative curvature) or spherical (positive curvature) space, is infeasible in Euclidean space [1].

As shown above, due to the high capacity of modeling complex structured data, e.g. scale-free, hierarchical or cyclic, there has been an growing interest in building deep learning models under non-Euclidean geometry, e.g. link prediction [2], recommendation [3].

What's CurvLearn

In this repository, we provide a framework, named CurvLearn, for training deep learning models in non-Euclidean spaces.

The framework implements the non-Euclidean operations in Tensorflow and remains the similar interface style for developing deep learning models.

Currently, CurvLearn serves for training several recommendation models in Alibaba. We implement CurvLearn on top of our distributed (graph/deep learning) training engines including Euler and x-deeplearning. The figure below shows how the category tree is embedded in hyperbolic space by using CurvLearn.

Why CurvLearn

CurvLearn has the following major features.

  1. Easy-to-Use. Converting a Tensorflow model from Euclidean space to non-Euclidean spaces with CurvLearn is graceful and undemanding, due to the manifold operations are decoupled from model architecture and similar to vanilla Tensorflow operations. For researchers, CurvLearn also reserves lucid interfaces for developing novel manifolds and optimizers.
  2. Comprehensive methods. CurvLearn is the first Tensorflow based non-Euclidean deep learning framework and supports several typical non-Euclidean spaces, e.g. constant curvature and mixed-curvature manifolds, together with necessary manifold operations and optimizers.
  3. Verified by tremendous industrial traffic. CurvLearn is serving on Alibaba's sponsored search platform with billions of online traffic in several key scenarios e.g. matching and cate prediction. Compared to Euclidean models, CurvLearn can bring more revenue and the RPM (revenue per mille) increases more than 1%.

Now we are working on exploring more non-Euclidean methods and integrating operations with Tensorflow. PR is welcomed!

CurvLearn Architecture

Manifolds

We implemented several types of constant curvature manifolds and the mixed-curvature manifold.

  • curvlearn.manifolds.Euclidean - Euclidean space with zero curvature.
  • curvlearn.manifolds.Stereographic - Constant curvature stereographic projection model. The curvature can be positive, negative or zero.
  • curvlearn.manifolds.PoincareBall - The stereographic projection of the Lorentz model with negative curvature.
  • curvlearn.manifolds.ProjectedSphere - The stereographic projection of the sphere model with positive curvature.
  • curvlearn.manifolds.Product - Mixed-curvature space consists of multiple manifolds with different curvatures.

Operations

To build a non-Euclidean deep neural network, we implemented several basic neural network operations. Complex operations can be decomposed into basic operations explicitly or realized in tangent space implicitly.

  • variable(t, c) - Defines a riemannian variable from manifold or tangent space at origin according to its name.
  • to_manifold(t, c, base) - Converts a tensor t in the tangent space of base point to the manifold.
  • to_tangent(t, c, base) - Converts a tensor t in the manifold to the tangent space of base point.
  • weight_sum(tensor_list, a, c) - Computes the sum of tensor list tensor_list with weight list a.
  • mean(t, c, axis) - Computes the average of elements along axis dimension of a tensor t.
  • sum(t, c, axis) - Computes the sum of elements along axis dimension of a tensor t.
  • concat(tensor_list, c, axis) - Concatenates tensor list tensor_list along axis dimension.
  • matmul(t, m, c) - Multiplies tensor t by euclidean matrix m.
  • add(x, y, c) - Adds tensor x and tensor y.
  • add_bias(t, b, c) - Adds a euclidean bias vector b to tensor t.
  • activation(t, c_in, c_out, act) - Computes the value of activation function act for the input tensor t.
  • linear(t, in_dim, out_dim, c_in, c_out, act, scope) - Computes the linear transformation for the input tensor t.
  • distance(src, tar, c) - Computes the squared geodesic/distance between src and tar.

Optimizers

We also implemented several typical riemannian optimizers. Please refer to [4] for more details.

  • curvlearn.optimizers.rsgd - Riemannian stochastic gradient optimizer.
  • curvlearn.optimizers.radagrad - Riemannian Adagrad optimizer.
  • curvlearn.optimizers.radam - Riemannian Adam optimizer.

How to use CurvLearn

To get started with CurvLearn quickly, we provide a simple binary classification model as a quick start and three representative examples for the application demo. Note that the non-Euclidean model is sensitive to the hyper-parameters such as learning rate, loss functions, optimizers, and initializers. It is necessary to tune those hyper-parameters when transferring to other datasets.

Installation

CurvLearn requires tensorflow~=1.15, compatible with both python 2/3.

The preferred way for installing is via pip.

pip install curvlearn

Quick Start

Here we show how to build binary classification model using CurvLearn. Model includes Stereographic manifold, linear operations , radam optimizer, etc.

Instructions and implement details are shown in Quick Start.

HGCN on Link Prediction [2]

HGCN (Hyperbolic Graph Convolutional Neural Network) is the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. Run the command to check the accuracy on the OpenFlight airport dataset. Running environment and performance are listed in hgcn.

python examples/hgcn/train.py

HyperML on Recommendation Ranking [3]

HyperML (Hyperbolic Metric Learning) applies hyperbolic geometry to recommender systems through metric learning approach and achieves state-of-the-art performance on multiple benchmark datasets. Run the command to check the accuracy on the Amazon Kindle-Store dataset. Running environment and performance are listed in hyperml.

python examples/hyperml/train.py

Hyper Tree Pre-train Model

In the real-world, data is often organized in tree-like structure or can be represented hierarchically. It has been proven that hyperbolic deep neural networks have significant advantages over tree-data representation than Euclidean models. In this case, we present a hyperbolic graph pre-train model for category tree in Taobao. The further details including dataset description, model architecture and visualization of results can be found in CateTreePretrain.

python examples/tree_pretrain/run_model.py

References

[1] Bachmann, Gregor, Gary Bécigneul, and Octavian Ganea. "Constant curvature graph convolutional networks." International Conference on Machine Learning. PMLR, 2020.

[2] Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing systems 32 (2019): 4868-4879.

[3] Vinh Tran, Lucas, et al. "Hyperml: A boosting metric learning approach in hyperbolic space for recommender systems." Proceedings of the 13th International Conference on Web Search and Data Mining. 2020.

[4] Bécigneul, Gary, and Octavian-Eugen Ganea. "Riemannian adaptive optimization methods." arXiv preprint arXiv:1810.00760 (2018).

License

This project is licensed under the Apache License, Version 2.0, unless otherwise explicitly stated.

Owner
Alibaba
Alibaba Open Source
Alibaba
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021