This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

Overview

GAN Memory for Lifelong learning

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

Please consider citing our paper if you refer to this code in your research.

@article{cong2020gan,
  title={GAN Memory with No Forgetting},
  author={Cong, Yulai and Zhao, Miaoyun and Li, Jianqiao and Wang, Sijia and Carin, Lawrence},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Requirement

python=3.7.3
pytorch=1.2.0

Notes

The source model is based on the GP-GAN.

GANMemory_Flowers.py is the implementation of the model in Figure1(a).

classConditionGANMemory.py is the class-conditional generalization of GAN memory, which is used as pseudo rehearsal for a lifelong classification as shown in Section 5.2.

Lifelong_classification.py is the code for the lifelong classification part as shown in Section 5.2.

Usage

First, download the pretrained GP-GAN model by running download_pretrainedGAN.py. Note please change the path therein.

Second, download the training data to the folder ./data/. For example, download the Flowers dataset from: https://www.robots.ox.ac.uk/~vgg/data/flowers/102/ to the folder ./data/102flowers/.

Dataset preparation

data
├──102flowers
           ├──all8189images
├── CelebA
...

Finally, run GANMemory_Flowers.py.

The FID scores of our method shown in Figure 1(b) are summerized in the following table.

Dataset 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K 55K 60K
Flowers 29.26 23.25 19.73 17.98 17.04 16.10 15.93 15.38 15.33 14.96 15.19 14.75
Cathedrals 19.78 18.32 17.10 16.47 16.15 16.33 16.08 15.94 15.78 15.60 15.64 15.67
Cats 38.56 25.74 23.14 21.15 20.80 20.89 19.73 19.88 18.69 18.57 17.57 18.18

For lifelong classification

  1. run classConditionGANMemory.py for each task until the whole sequeence of tasks are remembered and save the generators;

  2. run Lifelong_classification.py to get the classification results.

  3. run Compression_low_rank_six_butterfly.py to get the compression results.

Note, for the sake of simplicity, we devide the pseudo rehearsal based lifelong classification processes into above two stages, one can of course find a way to merge these two stages to form a learning process along task sequence.

Acknowledgement

Our code is based on GAN_stability: https://github.com/LMescheder/GAN_stability from the paper Which Training Methods for GANs do actually Converge?.

Owner
Miaoyun Zhao
Miaoyun Zhao
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022