PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Overview

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models

This repository will reproduce the main results from our paper:

On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp*, Mitch Hill*, Tian Han, Song-Chun Zhu, and Ying Nian Wu (*equal contributions)
https://arxiv.org/abs/1903.12370
AAAI 2020.

The files train_data.py and train_toy.py are PyTorch-based implementations of Algorithm 1 for image datasets and toy 2D distributions respectively. Both files will measure and plot the diagnostic values $d_{s_t}$ and $r_t$ described in Section 3 during training. The file eval.py will sample from a saved checkpoint using either unadjusted Langevin dynamics or Metropolis-Hastings adjusted Langevin dynamics. We provide an appendix ebm-anatomy-appendix.pdf that contains further practical considerations and empirical observations.

Config Files

The folder config_locker has several JSON files that reproduce different convergent and non-convergent learning outcomes for image datasets and toy distributions. Config files for evaluation of pre-trained networks are also included. The files data_config.json, toy_config.json, and eval_config.json fully explain the parameters for train_data.py, train_toy.py, and eval.py respectively.

Executable Files

To run an experiment with train_data.py, train_toy.py, or eval.py, just specify a name for the experiment folder and the location of the JSON config file:

# directory for experiment results
EXP_DIR = './name_of/new_folder/'
# json file with experiment config
CONFIG_FILE = './path_to/config.json'

before execution.

Other Files

Network structures are located in nets.py. A download function for Oxford Flowers 102 data, plotting functions, and a toy dataset class can be found in utils.py.

Diagnostics

Energy Difference and Langevin Gradient Magnitude: Both image and toy experiments will plot $d_{s_t}$ and $r_t$ (see Section 3) over training along with correlation plots as in Figure 4 (with ACF rather than PACF).

Landscape Plots: Toy experiments will plot the density and log-density (negative energy) for ground-truth, learned energy, and short-run models. Kernel density estimation is used to obtain the short-run density.

Short-Run MCMC Samples: Image data experiments will periodically visualize the short-run MCMC samples. A batch of persistent MCMC samples will also be saved for implementations that use persistent initialization for short-run sampling.

Long-Run MCMC Samples: Image data experiments have the option to obtain long-run MCMC samples during training. When log_longrun is set to true in a data config file, the training implementation will generate long-run MCMC samples at a frequency determined by log_longrun_freq. The appearance of long-run MCMC samples indicates whether the energy function assigns probability mass in realistic regions of the image space.

Pre-trained Networks

A convergent pre-trained network and non-convergent pre-trained network for the Oxford Flowers 102 dataset are available in the Releases section of the repository. The config files eval_flowers_convergent.json and eval_flowers_convergent_mh.json are set up to evaluate flowers_convergent_net.pth. The config file eval_flowers_nonconvergent.json is set up to evaluate flowers_nonconvergent_net.pth.

Contact

Please contact Mitch Hill ([email protected]) or Erik Nijkamp ([email protected]) for any questions.

You might also like...
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

PyTorch implementation of the implicit Q-learning algorithm (IQL)
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

A pytorch reprelication of the model-based reinforcement learning algorithm MBPO
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Comments
  • Step size in Langevin Dynamics

    Step size in Langevin Dynamics

    Hi, in your code, when you do the langevin dynamics, you run x_s_t.data += - f_prime + config['epsilon'] * t.randn_like(x_s_t) However, does this mean that the step size for the gradient f_prim is 1? Should we run x_s_t.data += - 0.5*config['epsilon']**2*f_prime + config['epsilon'] * t.randn_like(x_s_t) instead?

    opened by XavierXiao 1
Releases(v1.0)
Owner
Mitch Hill
Assistant Professor of Statistics and Data Science at UCF
Mitch Hill
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022