An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Overview

Stitching Historical Aerial Photos

badge DOI

The Story

In a centuries-old library at the University of Oxford, millions of aerial photographs taken in the final decades of the British Empire may help us prepare for a potential 21st-century calamity: an exodus of people driven by climate change to places that are more livable — but politically inhospitable.

Our team is studying how climate change might set off mass migrations around the world, and looking back to history for inspiration. These century-old photos, some of which taken by the British Royal Air Force, are key to this analysis because they could reveal how populations responded to natural disasters in the past — specifically, a series of extreme droughts that plagued Africa, and hurricanes that wreaked havoc in the Caribbean islands. There were such little census or survey data back then, and the earliest record of satellite images started only in the 1970s. Apart from these boxes and boxes of black-and-white photos, scholars trying to study historical mass migrations have almost nothing to work with; but now, with modern computer vision and machine learning techniques, we can paint a complete picture of human settlement patterns and how they respond to extreme weather events.

One of the first challenges in working with historical aerial photos is that it is difficult to georeference them (assigning the images to the geographical location that they cover). Unlike modern satellite imagery, historical images are not georeferenced at the time when they are collected, and the ways that experts record their locations can be pretty crude. Usually, they roughly outline the areas that the aerial photos cover by hand, and mark the image identifier numbers on them. As you can imagine, these hand-drawn maps tend to be inaccurate, and more importantly, georeferencing aerial photos solely based on hand-drawn maps is labor-intensive and quickly becomes impossible as the number of aerial photos grows. Other commercially available software such as Photoshop and OpenCV succeeded in automatically stitching a small number of images (<100), but failed miserably when scaled up.

Figure: An example sortie plot. Source: NCAP.

ExampleSortiePlot

In this project, I led a research team to develop an efficient and scalable data pipeline to digitize, process, stitch and georeference historical aerial photos; extract building footprints and road networks with deep learning models; and trace the changes in human settlement patterns over time. This repo contains codes for the image stitching process.

The Idea

We break this problem down to two steps -

  1. Given a pair of two images that overlap with each other, how do we overlay them? We take advantage of established methods in the computer vision literature - using SURF to detect features and RANSAC to estimate transformations from matched feature points robustly. These techniques were originally developed for panorama image stitching and work well in our context. This part of the codes is implemented mostly with opencv.

surf-ransac

  1. If we see all the images of interest as a graph (with each node being an image, and each edge being a relative transformation between a pair of images), how do we go from a collection of pairwise relationships to the absolute positions of all the images? We develop a "joint optimization" routine, which creates a differentiable loss given all the pairwise matches that are available, and uses back propagation to compute gradients and optimizes with Adam. This part of the codes is implemented mostly with pytorch. (No GPUs required for running the codes.)

joint-optim

Source of the demo image: Historical England.

Play with our demo.ipynb!

In this repo, we release a simplified version of our core codebase. For legal reasons, we cannot share raw historical photos or sortie plots publicly; so we provide a "toy example" for demonstration. In practice, our codebase can handle complex scenes with tens of thousands of images. Play with our interactive demo in demo.ipynb! You can change the initialization positions for all the images, but they will always find their way back to each other.

To play with our demo, run

docker pull luna983/stitch-aerial-photos:latest
docker run -p 8888:8888 luna983/stitch-aerial-photos:latest

go to http://localhost:8888/?token=[REPLACE WITH TOKEN SHOWN] in a web browser, and open up demo.ipynb to start exploring!

demo

Note that the SURF functions are not included in the free OpenCV distributions (so pip install opencv-python would not be sufficient); the docker image contains a version of OpenCV compiled specifically for that environment.

You might also like...
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

Releases(v1.1)
  • v1.1(Aug 31, 2020)

    Two bug fixes from v1.0 for the docker environment

    1. src/optim.py: a float32 tensor was parsed as a float64 tensor in the docker environment
    2. src/graph.py: graph building relies on tuple indices; this is fixed by adding a new method that is agnostic to index types
    Source code(tar.gz)
    Source code(zip)
Owner
Luna Yue Huang
Economist + Data Scientist
Luna Yue Huang
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Code for MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks

MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks This is the code for the paper: MentorNet: Learning Data-Driven Curriculum fo

Google 302 Dec 23, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022