Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

Overview

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning

Compute features for 3D point cloud registration. The article is available on Arxiv. It relies on:

  • A multi scale sparse voxel architecture
  • Self-supervised fine-tuning The combination of both allows better generalization capabilities and transfer across different datasets.

The code is available on the torch-points3d repository. This repository is to show how to launch the code for training and testing.

Demo

If you want to try MS-SVConv without installing anything on your computer, A Google colab notebook is available here (it takes few minutes to install everything). In the colab, we compute features using MS-SVConv and use Ransac (implementation of Open3D) to compute the transformation. You can try on 3DMatch on ETH. With this notebook, you can directly use the pretrained model on your project !

Installation

The code have been tried on an NVDIA RTX 1080 Ti with CUDA version 10.1. The OS was Ubuntu 18.04.

Installation for training and evaluation

This installation step is necessary if you want to train and evaluate MS-SVConv.

first you need, to clone the torch-points3d repository

git clone https://github.com/nicolas-chaulet/torch-points3d.git

Torch-points3d uses poetry to manage the packages. after installing Poetry, run :

poetry install --no-root

Activate the environnement

poetry shell

If you want to train MS-SVConv on 3DMatch, you will need pycuda (It's optional for testing).

pip install pycuda

You will also need to install Minkowski Engine and torchsparse Finally, you will need TEASER++ for testing.

If you have problems with installation (espaecially with pytorch_geometric), please visit the Troubleshooting section of torch-points3d page.

Training

registration

If you want to train MS-SVConv with 3 heads starting at the scale 2cm, run this command:

poetry run python train.py task=registration model_type=ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head dataset=fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True training.epochs=200 eval_frequency=10

automatically, the code will call the right yaml file in conf/data/registration for the dataset and conf/model/registration for the model. If you just want to train MS-SVConv with 1 head, run this command

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_1head data=registration/fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10

You can modify some hyperparameters directly on the command line. For example, if you want to change the learning rate of 1e-2, you can run:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_1head data=registration/fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10 optim.base_lr=1e-2

To resume training:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/fragment3dmatch training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10 checkpoint_dir=/path/of/directory/containing/pretrained/model

WARNING : On 3DMatch, you will need a lot of disk space because the code will download the RGBD image on 3DMatch and build the fragments from scratch. Also the code takes time (few hours).

For 3DMatch, it was supervised training because the pose is necessary. But we can also fine-tune in a self-supervised fashion (without needing the pose).

To train on Modelnet run this command:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/modelnet_sparse_ss training=sparse_fragment_reg tracker_options.make_submission=True epochs=200 eval_frequency=10

To fine-tune on ETH run this command (First, download the pretrained model from 3DMatch here):

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/eth_base training=sparse_fragment_reg_finetune tracker_options.make_submission=True epochs=200 eval_frequency=10 models.path_pretrained=/path/to/your/pretrained/model.pt

To fine-tune on TUM, run this command:

poetry run python train.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/testtum_ss training=sparse_fragment_reg_finetune tracker_options.make_submission=True epochs=200 eval_frequency=10 models.path_pretrained=/path/to/your/pretrained/model.pt

For all these command, it will save in outputs directory log of the training, it will save a .pt file which is the weights of

semantic segmentation

You can also train MS-SVConv on scannet for semantic segmentation. To do this simply run:

poetry run python train.py task=segmentation models=segmentation/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head lr_scheduler.params.gamma=0.9922 data=segmentation/scannet-sparse training=minkowski_scannet tracker_options.make_submission=False tracker_options.full_res=False data.process_workers=1 wandb.log=True eval_frequency=10 batch_size=4

And you can easily transfer from registration to segmantation, with this command:

poetry run python train.py task=segmentation models=segmentation/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head lr_scheduler.params.gamma=0.9922 data=segmentation/scannet-sparse training=minkowski_scannet tracker_options.make_submission=False tracker_options.full_res=False data.process_workers=1 wandb.log=True eval_frequency=10 batch_size=4 models.path_pretrained=/path/to/your/pretrained/model.pt

Evaluation

If you want to evaluate the models on 3DMatch, download the model here and run:

poetry run python scripts/test_registration_scripts/evaluate.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/fragment3dmatch training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/

on ETH (model here),

poetry run python scripts/test_registration_scripts/evaluate.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/eth_base training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/

on TUM (model here),

poetry run python scripts/test_registration_scripts/evaluate.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B2cm_X2_3head data=registration/testtum_ss training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/

You can also visualize matches, you can run:

python scripts/test_registration_scripts/see_matches.py task=registration models=registration/ms_svconv_base model_name=MS_SVCONV_B4cm_X2_3head data=registration/eth_base training=sparse_fragment_reg cuda=True data.sym=True checkpoint_dir=/directory/of/the/models/ data.first_subsampling=0.04 +ind=548 +t=22

You should obtain this image

Model Zoo

You can find all the pretrained model (More will be added in the future)

citation

If you like our work, please cite it :

@inproceedings{horache2021mssvconv,
      title={3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning},
      author={Sofiane Horache and Jean-Emmanuel Deschaud and François Goulette},
      year={2021},
      journal={arXiv preprint arXiv:2103.14533}
}

And if you use ETH, 3DMatch, TUM or ModelNet as dataset, please cite the respective authors.

TODO

  • Add other pretrained models on the model zoo
  • Add others datasets such as KITTI Dataset
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
571 Dec 25, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022