Embracing Single Stride 3D Object Detector with Sparse Transformer

Related tags

Deep LearningSST
Overview

SST: Single-stride Sparse Transformer

This is the official implementation of paper:

Embracing Single Stride 3D Object Detector with Sparse Transformer

Authors: Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang Zhao, Feng Wang, Naiyan Wang, Zhaoxiang Zhang

Paper Link (Check again on Monday)

Introduction and Highlights

  • SST is a single-stride network, which maintains original feature resolution from the beginning to the end of the network. Due to the characterisric of single stride, SST achieves exciting performances on small object detection (Pedestrian, Cyclist).
  • For simplicity, except for backbone, SST is almost the same with the basic PointPillars in MMDetection3D. With such a basic setting, SST achieves state-of-the-art performance in Pedestrian and Cyclist and outperforms PointPillars more than 10 AP only at a cost of 1.5x latency.
  • SST consists of 6 Regional Sparse Attention (SRA) blocks, which deal with the sparse voxel set. It's similar to Submanifold Sparse Convolution (SSC), but much more powerful than SSC. It's locality and sparsity guarantee the efficiency in the single stride setting.
  • The SRA can also be used in many other task to process sparse point clouds. Our implementation of SRA only relies on the pure Python APIs in PyTorch without engineering efforts as taken in the CUDA implementation of sparse convolution.
  • Large room for further improvements. For example, second stage, anchor-free head, IoU scores and advanced techniques from ViT, etc.

Usage

PyTorch >= 1.9 is highly recommended for a better support of the checkpoint technique.

Our immplementation is based on MMDetection3D, so just follow their getting_started and simply run the script: run.sh. Then you will get a basic results of SST after 5~7 hours (depends on your devices).

We only provide the single-stage model here, as for our two-stage models, please follow LiDAR-RCNN. It's also a good choice to apply other powerful second stage detectors to our single-stage SST.

Main results

Single-stage Model (based on PointPillars) on Waymo validation split

#Sweeps Veh_L1 Ped_L1 Cyc_L1
SST_1f 1 73.57 80.01 70.72
SST_3f 3 75.16 83.24 75.96

Note that we train the 3 classes together, so the performance above is a little bit lower than that reported in our paper.

TODO

  • Build SRA block with similar API as Sparse Convolution for more convenient usage.

Acknowlegement

This project is based on the following codebases.

Owner
TuSimple
The Future of Trucking
TuSimple
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022