Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Related tags

Deep LearningDietNeRF
Overview

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Website | ICCV paper | arXiv | Twitter

Diagram overviewing DietNeRF's training procedure

This repository contains the official implementation of DietNeRF, a system that reconstructs 3D scenes from a few posed photos.

Setup

We use the following folder structure:

dietnerf/
  logs/ (images, videos, checkpoints)
  data/
    nerf_synthetic/
  configs/ (run configuration files)
CLIP/ (Fork of OpenAI's clip repository with a wrapper)

Create conda environment:

conda create -n dietnerf python=3.9
conda activate dietnerf

Set up requirements and our fork of CLIP:

pip install -r requirements.txt
cd CLIP
pip install -e .

Login to Weights & Biases:

wandb login

Experiments on the Realistic Synthetic dataset

Realistic Synthetic experiments are implemented in the ./dietnerf subdirectory.

You need to download datasets from NeRF's Google Drive folder. The dataset was used in the original NeRF paper by Mildenhall et al. For example,

mkdir dietnerf/logs/ dietnerf/data/
cd dietnerf/data
pip install gdown
gdown --id 18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG -O nerf_synthetic.zip
unzip nerf_synthetic.zip
rm -r __MACOSX

Then, shrink images to 400x400:

python dietnerf/scripts/bulk_shrink_images.py "dietnerf/data/nerf_synthetic/*/*/*.png" dietnerf/data/nerf_synthetic_400_rgb/ True

These images are used for FID/KID computation. The dietnerf/run_nerf.py training and evaluation code automatically shrinks images with the --half_res argument.

Each experiment has a config file stored in dietnerf/configs/. Scripts in dietnerf/scripts/ can be run to train and evaluate models. Run these scripts from ./dietnerf. The scripts assume you are running one script at a time on a server with 8 NVIDIA GPUs.

cd dietnerf
export WANDB_ENTITY=
   
    

# NeRF baselines
sh scripts/run_synthetic_nerf_100v.sh
sh scripts/run_synthetic_nerf_8v.sh
sh scripts/run_synthetic_simplified_nerf_8v.sh

# DietNeRF with 8 observed views
sh scripts/run_synthetic_dietnerf_8v.sh
sh scripts/run_synthetic_dietnerf_ft_8v.sh

# NeRF and DietNeRF with partial observability
sh scripts/run_synthetic_unseen_side_14v.sh

   

Experiments on the DTU dataset

Coming soon. Our paper also fine-tunes pixelNeRF on DTU scenes for 1-shot view synthesis.

Citation and acknowledgements

If DietNeRF is relevant to your project, please cite our associated paper:

@InProceedings{Jain_2021_ICCV,
    author    = {Jain, Ajay and Tancik, Matthew and Abbeel, Pieter},
    title     = {Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5885-5894}
}

This code is based on Yen-Chen Lin's PyTorch implementation of NeRF and the official pixelNeRF code.

Owner
Ajay Jain
AI PhD at Berkeley
Ajay Jain
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023