TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

Overview
Comments
  • abs_depth_error

    abs_depth_error

    I find ABS_DEPTH_ERROR is close to 6 or even 7 during training, is this normal? Here are the training results for Epoch 5. Is it because of the slow convergence?

    avg_test_scalars: {'loss': 4.360309665948113, 'depth_loss': 6.535046514014081, 'entropy_loss': 4.360309665948113, 'abs_depth_error': 6.899323051878795, 'thres2mm_error': 0.16829867261163733, 'thres4mm_error': 0.10954744909229193, 'thres8mm_error': 0.07844322964626443, 'thres14mm_error': 0.06323695212957076, 'thres20mm_error': 0.055751020700780536, 'thres2mm_abserror': 0.597563438798779, 'thres4mm_abserror': 2.7356186663791666, 'thres8mm_abserror': 5.608324628466483, 'thres14mm_abserror': 10.510002394554125, 'thres20mm_abserror': 16.67409769420184, 'thres>20mm_abserror': 78.15814284054947}

    opened by zhang-snowy 7
  • About the fusion setting in DTU

    About the fusion setting in DTU

    Thank you for your great contribution. The script use the gipuma as the fusion method with num_consistent=5prob_threshold=0.05disp_threshold=0.25. However, it produces point cloud results with only 1/2 points compared with the point cloud results you provide in DTU, leading to a much poorer result in DTU. Is there any setting wrong in the script? Or because it does not use the dynamic fusion method described in the paper. Could you provide the dynamic fusion process in DTU?

    opened by DIVE128 5
  • Testing on TnT advanced dataset

    Testing on TnT advanced dataset

    Hi, thank you for sharing this great work!

    I'm try to test transmvsnet on tnt advanced dataset, but meet some problem. My test environment is ubuntu16.04 with cuda11.3 and pytorch 1.10.

    The first thing is that there is no cams_1 folder under tnt dataset, is it a revised version of original cams folder or you just changed the folder name?

    I just changed the folder name, then run scripts/test_tnt.sh, but I find the speed is rather slow, about 10 seconds on 1080ti for a image (1056 x 1920), is it normal?

    Finally I get the fused point cloud, but the cloud is meaningless, I checked the depth map and confidence map, all of the data are very strange, apperantly not right.

    Can you help me with these problems?

    opened by CanCanZeng 4
  • Some implement details about the paper

    Some implement details about the paper

    Firstly thanks for your paper and I'm looking forward to your open-sourced code.

    And I have some questions about your paper: (Hopefully you can reply, thanks in advance!) (1) In section 4.2, "The model is trained with Adam for 10 epochs with an initial learning rate of 0.001, which decays by a factor of 0.5 respectively after 6, 8, and 12 epochs." I'm confused about the epochs. And I also noticed that this training strategy is different from CasMVSNet. Did you try the training strategy in CasMVSNet? What's the difference? (2) In Table4(b), focal loss(what is the value of \gamma?) suppresses CE loss by 0.06. However, In Table4(e) and Table 6, we infer that the best model use CE loss(FL with \gamma=0). My question is: did you keep Focal loss \gamma unchanged in the Ablation study in Table4? If not, how \gamma changes? Could you elaborate?

    Really appreciate it!

    opened by JeffWang987 4
  • source code

    source code

    Hi, @Lxiangyue Thank you for the nice paper.

    It's been over a month since authors announced that the code will be available. May I know when the code will be released? (or whether it will not be released)

    opened by Ys-Jung77 3
  • Testing on my own dataset

    Testing on my own dataset

    Hi thanks for your interesting work. I tested your code on one of the DTU dataset (Moda). as you can see from the following image, the results are quite well. image

    but I got a very bad result, when i tried to tested on one of my dataset (see the following pic) using your pretrained model (model_dtu). Now, my question is that do you thing that the object is too complicated and different compared to DTU dataset and it is all we can get from the pretrain model without retraining it? is it possible to improve by changing the input parameters? In general, would you please share your opinion about this result? image

    opened by AliKaramiFBK 1
  • generate dense 3D point cloud

    generate dense 3D point cloud

    thanks for your greate work I just tried to do a test on DTU testing dataset I got the depth map for each view but I got a bit confised on how to generate 3D point cloud using your code would you please let me know Best

    opened by AliKaramiFBK 1
  • GPU memory consumption

    GPU memory consumption

    Hi! Thanks for your excellent work! When I tested on the DTU dataset with pretrained model, the gpu memory consumption is 4439MB, but the paper gives 3778MB.

    I do not know where the problem is.

    opened by JianfeiJ 0
  • Using my own data

    Using my own data

    If I have the intrinsic matrics and extrinsic matrics of cameras, which means I don't need to run SFM in COLMAP, how should I struct my data to train the model?

    opened by PaperDollssss 2
  • TnT dataset results

    TnT dataset results

    Thanks for the great job. I follow the instruction and upload the reconstruction result of tnt but find the F-score=60.29, and I find the point cloud sizes are a larger than the upload ones. Whether the reconstructed point cloud use the param settting of test_tnt.sh or it should be tuned manually? :smile:

    opened by CC9310 1
  • TankAndTemple Test

    TankAndTemple Test

    Hi, 我测试了TAT数据集中的Family,使用的是默认脚本test_tnt.sh,采用normal融合,最近仅得到13MB点云文件。经检查发现生成的mask文件夹中的_geo.png都是大部分区域黑色图片,从而最后得到的 final.png的大部分区域都是无效的。geometric consistency阈值分别是默认的0.01和1。不知道您这边是否有一样的问题?

    opened by lt-xiang 13
  • Why is there a big gap between the reproducing results and the paper results?

    Why is there a big gap between the reproducing results and the paper results?

    I have tried the pre-trained model you offered on DTU dataset. But the results I got are mean_acc=0.299, mean_comp=0.385, overall=0.342, and the results you presented in the paper are mean_acc=0.321, mean_comp=0.289, overall=0.305.

    I do not know where the problem is.

    opened by cainsmile 14
Releases(T&T_ply)
Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023