Implementation of "Deep Implicit Templates for 3D Shape Representation"

Overview

Deep Implicit Templates for 3D Shape Representation

Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020.

This repository is an implementation for Deep Implicit Templates. Full paper is available here.

Teaser Image

Citing DIT

If you use DIT in your research, please cite the paper:

@misc{zheng2020dit,
title={Deep Implicit Templates for 3D Shape Representation},
author={Zheng, Zerong and Yu, Tao and Dai, Qionghai and Liu, Yebin},
year={2020},
eprint={2011.14565},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Requirements

  • Ubuntu 18.04
  • Pytorch (tested on 1.7.0)
  • plyfile
  • matplotlib
  • ninja
  • pathos
  • tensorboardX
  • pyrender

Demo

This repo contains pre-trained models for cars, chairs, airplanes and sofas. After cloning the code repo, please run the following commands to generate the sofa template as well as 20 training sofa meshes with the color-coded canonical coordinates (i.e., the correspondences between the template and the meshes).

GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_template_mesh.py -e pretrained/sofas_dit --debug 
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_training_meshes.py -e pretrained/sofas_dit --debug --start_id 0 --end_id 20 --octree --keep_normalization
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_meshes_correspondence.py -e pretrained/sofas_dit --debug --start_id 0 --end_id 20

The canonical coordinates are stored as float RGB values in .ply files. You can render the color-coded meshes for visualization by running:

python render_correspondences.py  -i pretrained/sofas_dit/TrainingMeshes/2000/ShapeNet/[....].ply

Data Preparation

Please follow original setting of DeepSDF to prepare the SDF data in ./data folder.

Traing and Evaluation

After preparing the data following DeepSDF, you can train the model as:

GPU_ID=0
preprocessed_data_dir=./data
CUDA_VISIBLE_DEVICES=${GPU_ID} python train_deep_implicit_templates.py -e examples/sofas_dit --debug --batch_split 2 -c latest -d ${preprocessed_data_dir}

To evaluate the reconstruction accuracy (Tab.2 in our paper), please run:

GPU_ID=0
preprocessed_data_dir=./data
CUDA_VISIBLE_DEVICES=${GPU_ID} python reconstruct_deep_implicit_templates.py -e examples/sofas_dit -c 2000 --split examples/splits/sv2_sofas_test.json -d ${preprocessed_data_dir} --skip --octree
CUDA_VISIBLE_DEVICES=${GPU_ID} python evaluate.py -e examples/sofas_dit -c 2000 -s examples/splits/sv2_sofas_test.json -d ${preprocessed_data_dir} --debug

Due the the randomness of the points sampled from the meshes, the numeric results will vary across multiple reruns of the same shape, and will likely differ from those produced in the paper.

More evaluation code is coming.

Acknowledgements

This code repo is heavily based on DeepSDF. We thank the authors for their great job!

License

DeepSDF is relased under the MIT License. See the [LICENSE file][5] for more details.

Owner
Zerong Zheng
期待你发现
Zerong Zheng
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022