Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

Overview

nli2paraphrases

Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and paraphrasing. The idea presented in the paper is to re-use NLI datasets for paraphrasing, by finding paraphrases through bidirectional entailment.

Setup

# Make sure to run this from the root of the project (top-level directory)
$ pip3 install -r requirements.txt
$ python3 setup.py install

Project Organization

├── README.md          
├── experiments        <- Experiment scripts, through which training and extraction is done
├── models             <- Intended for storing fine-tuned models and configs
├── requirements.txt   
├── setup.py           
├── src                <- Core source code for this project
│   ├── __init__.py    
│   ├── data           <- data loading scripts
│   ├── models         <- general scripts for training/using a NLI model
│   └── visualization  <- visualization scripts for obtaining a nicer view of extracted paraphrases

Getting started

As an example, let us extract paraphrases from SNLI.

The training and extraction process largely follows the same track for other datasets (with some new or removed flags, run scripts with --help flag to see the specifics).

In the example, we first fine-tune a roberta-base NLI model on SNLI sequences (s1, s2).
Then, we use the fine-tuned model to predict the reverse relation for entailment examples, and select only those examples for which entailment holds in both directions. The extracted paraphrases are stored into extract-argmax.

This example assumes that you have access to a GPU. If not, you can force the scripts to use CPU by setting --use_cpu, although the whole process will be much slower.

# Assuming the current position is in the root directory of the project
$ cd experiments/SNLI_NLI

# Training takes ~1hr30mins on Colab GPU (K80)
$ python3 train_model.py \
--experiment_dir="../models/SNLI_NLI/snli-roberta-base-maxlen42-2e-5" \
--pretrained_name_or_path="roberta-base" \
--model_type="roberta" \
--num_epochs=10 \
--max_seq_len=42 \
--batch_size=256 \
--learning_rate=2e-5 \
--early_stopping_rounds=5 \
--validate_every_n_examples=5000

# Extraction takes ~15mins on Colab GPU (K80)
$ python3 extract_paraphrases.py \
--experiment_dir="extract-argmax" \
--pretrained_name_or_path="../models/SNLI_NLI/snli-roberta-base-maxlen42-2e-5" \
--model_type="roberta" \
--max_seq_len=42 \
--batch_size=1024 \
--l2r_strategy="ground_truth" \
--r2l_strategy="argmax"

Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Matej Klemen
MSc student at Faculty of Computer and Information Science (University of Ljubljana). Mainly into data science.
Matej Klemen
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022