ImageNet Adversarial Image Evaluation

Overview

ImageNet Adversarial Image Evaluation

This repository contains the code and some materials used in the experimental work presented in the following papers:

[1] Selection of Source Images Heavily Influences Effectiveness of Adversarial Attacks
British Machine Vision Conference (BMVC), 2021.

[2] Evaluating Adversarial Attacks on ImageNet: A Reality Check on Misclassification Classes
Conference on Neural Information Processing Systems (NeurIPS), Workshop on ImageNet: Past, Present, and Future, 2021.

Fragile Source images

Paper [1] TLDR: A number of source images easily become adversarial examples with relatively low perturbation levels and achieve high model-to-model transferability successes compared to other source images.

In src folder, we shared a number of cleaned source code that can be used to generate the figures used in the paper with the usage of adversarial examples generated with PGD, CW, and MI-FGSM. You can download the data here. Below are some of the visualizations used in the paper and their descriptions.

Model-to-model transferability matrix

Model-to-model transferability matrix can be generated with the usage of vis_m2m_transferability.py. This visualization has two modes, an overview one where only the transfer success percentage is shown and a detailed view where both the absolute amount and the percentage is shown. The visualization for this experiment is given below:

Source image transferability count

In the paper [1], we counted the model-to-model transferability of adversarial examples as they are generated from source images. This experiment can be reproduced with vis_transferability_cnt.py. The visualization for this experiment is given below:

Perturbation distribution

In the paper [1], we counted the model-to-model transferability of adversarial examples as they are generated from source images. This experiment can be reproduced with vis_transferability_cnt.py. The visualization for this experiment is given below:

Untargeted misclassification for adversarial examples

Paper [2] TLDR: Adversarial examples that achieve untargeted model-to-model transferability are often misclassified into categories that are similar to the category of their origin.

We share the imagenet hierarchy used in the paper in the dictionary format in imagenet_hier.py.

Citation

If you find the code in this repository useful for your research, consider citing our paper. Also, feel free to use any visuals available here.

@inproceedings{ozbulak2021selection,
    title={Selection of Source Images Heavily Influences the Effectiveness of Adversarial Attacks},
    author={Ozbulak, Utku and Timothy Anzaku, Esla and De Neve, Wesley and Van Messem, Arnout},
    booktitle={British Machine vision Conference (BMVC)},
    year={2021}
}

@inproceedings{ozbulak2021evaluating,
  title={Evaluating Adversarial Attacks on ImageNet: A Reality Check on Misclassification Classes},
  author={Ozbulak, Utku and Pintor, Maura and Van Messem, Arnout and De Neve, Wesley},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future},
  year={2021}
}

Requirements

python > 3.5
torch >= 0.4.0
torchvision >= 0.1.9
numpy >= 1.13.0
PIL >= 1.1.7
Owner
Utku Ozbulak
Fourth-year doctoral student at Ghent University. Located in Ghent University Global Campus, South Korea.
Utku Ozbulak
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022