A framework for joint super-resolution and image synthesis, without requiring real training data

Related tags

Deep LearningSynthSR
Overview

SynthSR

This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The method can also be configured to achieve denoising and bias field correction.

The network takes synthetic scans generated on the fly as inputs, and can be trained to regress either real or synthetic target scans. The synthetic scans are obtained by sampling a generative model building on the SynthSeg [1] package, which we really encourage you to have a look at!


In short, synthetic scans are generated at each mini-batch by: 1) randomly selecting a label map among of pool of training segmentations, 2) spatially deforming it in 3D, 3) sampling a Gaussian Mixture Model (GMM) conditioned on the deformed label map (see Figure 1 below), and 4) corrupting with a random bias field. This gives us a synthetic scan at high resolution (HR). We then simulate thick slice spacing by blurring and downsampling it to low resolution (LR). In SR, we then train a network to learn the mapping between LR data (possibly multimodal, hence the joint synthesis) and HR synthetic scans. Moreover If real images are available along with the training label maps, we can learn to regress the real images instead.


Training overview Figure 1: overview of SynthSR


Tutorials for Generation and Training

This repository contains code to train your own network for SR or joint SR and synthesis. Because the training function has a lot of options, we provide here some tutorials to familiarise yourself with the different training/generation parameters. We emphasise that we provide example training data along with these scripts: 5 preprocessed publicly available T1 scans at 1mm isotropic resolution [2] with corresponding label maps obtained with FreeSurfer [3]. The tutorials can be found in scripts, and they include:

  • Six generation scripts corresponding to different use cases (see Figure 2 below). We recommend to go through them all, (even if you're only interested in case 1), since we successively introduce different functionalities as we go through.

  • One training script, explaining the main training parameters.

  • One script explaining how to estimate the parameters governing the GMM, in case you wish to train a model on your own data.


Training overview Figure 2: Examples generated by running the tutorials on the provided data [2]. For each use case, we show the synhtetic images used as inputs to the network, as well as the regression target.


Content

  • SynthSR: this is the main folder containing the generative model and training function:

    • labels_to_image_model.py: builds the generative model.

    • brain_generator.py: contains the class BrainGenerator, which is a wrapper around the model. New images can simply be generated by instantiating an object of this class, and calling the method generate_image().

    • model_inputs.py: prepares the inputs of the generative model.

    • training.py: contains the function to train the network. All training parameters are explained there.

    • metrics_model.py: contains a Keras model that implements diffrent loss functions.

    • estimate_priors.py: contains functions to estimate the prior distributions of the GMM parameters.

  • data: this folder contains the data for the tutorials (T1 scans [2], corresponding FreeSurfer segmentations and some other useful files)

  • script: additionally to the tutorials, we also provide a script to launch trainings from the terminal

  • ext: contains external packages.


Requirements

This code relies on several external packages (already included in \ext):

  • lab2im: contains functions for data augmentation, and a simple version of the generative model, on which we build to build label_to_image_model [1]

  • neuron: contains functions for deforming, and resizing tensors, as well as functions to build the segmentation network [4,5].

  • pytool-lib: library required by the neuron package.

All the other requirements are listed in requirements.txt. We list here the most important dependencies:

  • tensorflow-gpu 2.0
  • tensorflow_probability 0.8
  • keras > 2.0
  • cuda 10.0 (required by tensorflow)
  • cudnn 7.0
  • nibabel
  • numpy, scipy, sklearn, tqdm, pillow, matplotlib, ipython, ...

Citation/Contact

This repository contains the code related to a submission that is still under review.

If you have any question regarding the usage of this code, or any suggestions to improve it you can contact us at:
[email protected]


References

[1] A Learning Strategy for Contrast-agnostic MRI Segmentation
Benjamin Billot, Douglas N. Greve, Koen Van Leemput, Bruce Fischl, Juan Eugenio Iglesias*, Adrian V. Dalca*
*contributed equally
MIDL 2020

[2] A novel in vivo atlas of human hippocampal subfields usinghigh-resolution 3 T magnetic resonance imaging
J. Winterburn, J. Pruessner, S. Chavez, M. Schira, N. Lobaugh, A. Voineskos, M. Chakravarty
NeuroImage (2013)

[3] FreeSurfer
Bruce Fischl
NeuroImage (2012)

[4] Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation
Adrian V. Dalca, John Guttag, Mert R. Sabuncu
CVPR 2018

[5] Unsupervised Data Imputation via Variational Inference of Deep Subspaces
Adrian V. Dalca, John Guttag, Mert R. Sabuncu
Arxiv preprint (2019)

A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023