Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

Overview

alt text

The Face Synthetics dataset

Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

It was introduced in our paper Fake It Till You Make It: Face analysis in the wild using synthetic data alone.

Our dataset contains:

  • 100,000 images of faces at 512 x 512 pixel resolution
  • 70 standard facial landmark annotations
  • per-pixel semantic class anotations

It can be used to train machine learning systems for face-related tasks such as landmark localization and face parsing, showing that synthetic data can both match real data in accuracy as well as open up new approaches where manual labelling would be impossible.

Some images also include hands and off-center distractor faces in addition to primary faces centered in the image.

The Face Synthetics dataset can be used for non-commercial research, and is licensed under the license found in LICENSE.txt.

Downloading the dataset

A sample dataset with 100 images (34MB) can be downloaded from here

A sample dataset with 1000 images (320MB) can be downloaded from here

A full dataset of 100,000 images (32GB) can be downloaded from here

Dataset layout

The Face Synthetics dataset is a single .zip file containing color images, segmentation images, and 2D landmark coordinates in a text file.

dataset.zip
├── {frame_id}.png        # Rendered image of a face
├── {frame_id}_seg.png    # Segmentation image, where each pixel has an integer value mapping to the categories below
├── {frame_id}_ldmks.txt  # Landmark annotations for 70 facial landmarks (x, y) coordinates for every row

Our landmark annotations follow the 68 landmark scheme from iBUG with two additional points for the pupil centers. Please note that our 2D landmarks are projections of 3D points and do not follow the outline of the face/lips/eyebrows in the way that is common from manually annotated landmarks. They can be thought of as an "x-ray" version of 2D landmarks.

Each pixel in the segmentation image will belong to one of the following classes:

BACKGROUND = 0
SKIN = 1
NOSE = 2
RIGHT_EYE = 3
LEFT_EYE = 4
RIGHT_BROW = 5
LEFT_BROW = 6
RIGHT_EAR = 7
LEFT_EAR = 8
MOUTH_INTERIOR = 9
TOP_LIP = 10
BOTTOM_LIP = 11
NECK = 12
HAIR = 13
BEARD = 14
CLOTHING = 15
GLASSES = 16
HEADWEAR = 17
FACEWEAR = 18
IGNORE = 255

Pixels marked as IGNORE should be ignored during training.

Notes:

  • Opaque eyeglass lenses are labeled as GLASSES, while transparent lenses as the class behind them.
  • For bushy eyebrows, a few eyebrow pixels may extend beyond the boundary of the face. These pixels are labelled as IGNORE.

Disclaimer

Some of our rendered faces may be close in appearance to the faces of real people. Any such similarity is naturally unintentional, as it would be in a dataset of real images, where people may appear similar to others unknown to them.

Generalization to real data

For best results, we suggest you follow the methodology described in our paper (citation below). Especially note the need for 1) data augmentation; 2) use of a translation layer if evaluating on real data benchmarks that contain different types of annotations.

Our dataset strives to be as diverse as possible and generalizes to real test data as described in the paper. However, you may encounter situations that it does not cover and/or where generalization is less successful. We recommend that machine learning practitioners always test models on real data that is representative of the target deployment scenario.

Citation

If you use the Face Synthetics Dataset your research, please cite the following paper:

@misc{wood2021fake,
    title={Fake It Till You Make It: Face analysis in the wild using synthetic data alone},
    author={Erroll Wood and Tadas Baltru\v{s}aitis and Charlie Hewitt and Sebastian Dziadzio and Matthew Johnson and Virginia Estellers and Thomas J. Cashman and Jamie Shotton},
    year={2021},
    eprint={2109.15102},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023