From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Overview

From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang and Jiaying Liu

[Paper Link] [Project Page] [Slides](TBA)[Video](TBA) (CVPR'2020 Poster)

Abstract

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement. A deep recursive band network (DRBN) is proposed to recover a linear band representation of an enhanced normal-light image with paired low/normal-light images, and then obtain an improved one by recomposing the given bands via another learnable linear transformation based on a perceptual quality-driven adversarial learning with unpaired data. The architecture is powerful and flexible to have the merit of training with both paired and unpaired data. On one hand, the proposed network is well designed to extract a series of coarse-to-fine band representations, whose estimations are mutually beneficial in a recursive process. On the other hand, the extracted band representation of the enhanced image in the first stage of DRBN (recursive band learning) bridges the gap between the restoration knowledge of paired data and the perceptual quality preference to real high-quality images. Its second stage (band recomposition) learns to recompose the band representation towards fitting perceptual properties of highquality images via adversarial learning. With the help of this two-stage design, our approach generates the enhanced results with well reconstructed details and visually promising contrast and color distributions. Extensive evaluations demonstrate the superiority of our DRBN.

If you find the resource useful, please cite the following :- )

@InProceedings{Yang_2020_CVPR,
author = {Yang, Wenhan and Wang, Shiqi and Fang, Yuming and Wang, Yue and Liu, Jiaying},
title = {From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation:

  1. Clone this repo
  2. Install PyTorch and dependencies from http://pytorch.org
  3. For stage II training, you need to download [VGG16 Model] and put it in DRBL-stage2/src/.
  4. For testing, you can directly run test.sh in DRBL-stage1/src/ and DRBL-stage2/src/.
  5. For training, you can directly run train.sh in DRBL-stage1/src/ and DRBL-stage2/src/.
  6. You can download our dataset here: [Dataset Link] (extracted code: 22im) [Partly updated on 27 March]

Note: the code is suitable for PyTorch 0.4.1)

Detailed Guidance:

Thank you for your attention!

  1. How could I reproduce the objective evaluation results in Table I in the paper?
    You can run sh ./DRBL-stage1/src/test.sh
    The 1st stage offers better objective results while the other produces better overall subjective visual quality. In our paper, the methods involved in objective comparisons are not trained with adversarial/quality losses.

  2. Data structure You can see src\data\lowlight.py and src\data\lowlighttest.py for those details in the code of each stage.

    In the 1st stage:
    hr --> normal-light images, lr --> low-light images
    lr and hr are paired.

    In the 2nd stage:
    hr --> normal-light images, lr --> low-light images
    lr and hr are paired.
    lrr --> low-light images in the real applications, hq --> high quality dataset

  3. Dataset You can obtain the dataset via: [Dataset Link] (extracted code: 22im) [Partly updated on 27 March]
    We introduce these collections here:
    a) Our_low: real captured low-light images in LOL for training;
    b) Our_normal: real captured normal-light images in LOL for training;
    c) Our_low_test: real captured low-light images in LOL for testing;
    d) Our_normal_test: real captured normal-light images in LOL for testing;
    e) AVA_good_2: the high-quality images selected from the AVA dataset based on the MOS values;
    f) Low_real_test_2_rs: real low-light images selected from LIME, NPE, VV, DICM, the typical unpaired low-light testing datasets;
    g) Low_degraded: synthetic low-light images in LOL for training;
    h) Normal: synthetic normal-light images in LOL for training;

  4. Image number in LOL
    LOL: Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. "Deep Retinex Decomposition for Low-Light Enhancement", BMVC, 2018. [Baiduyun (extracted code: sdd0)] [Google Drive]
    LOL-v2 (the extension work): Wenhan Yang, Haofeng Huang, Wenjing Wang, Shiqi Wang, and Jiaying Liu. "Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement", TIP, 2021. [Baiduyun (extracted code: l9xm)] [Google Drive]

    We use LOL-v2 as it is larger and more diverse. In fact, it is quite unexpected that the work of LOL-v2 is published later than this, which might also bother followers.

    I think you can choose which one to follow freely.

  5. Pytorch version
    Only 0.4 and 0.41 currently.
    If you have to use more advanced versions, which might be constrained to the GPU device types, you might access Wang Hong's github for the idea to replace parts of the dataloader: [New Dataloader]

  6. Why does stage 2 have two branches?
    The distributions of LOL and LIME, NPE, VV, DICM are quite different.
    We empirically found that it will lead to better performance if two models and the corresponding training data are adopted.

Contact

If you have questions, you can contact [email protected]. A timely response is promised, if the email is sent by your affliaton email with your signed name.

Owner
Yang Wenhan
Yang Wenhan
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023