unofficial pytorch implementation of RefineGAN

Overview

RefineGAN

unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpack can be found at https://github.com/tmquan/RefineGAN

To Do

  • run the original tensorpack code (sorry, can't run tensorpack on my GPU)
  • pytorch implementation and experiments on brain images with radial mask
  • bug fixed. the mean psnr of zero-filled image is not exactly the same as the value in original paper, although the model improvement is similar
  • experiments on different masks

Install

python>=3.7.11 is required with all requirements.txt installed including pytorch>=1.10.0

git clone https://github.com/hellopipu/RefineGAN.git
cd RefineGAN
pip install -r requirements.txt

How to use

for training:

cd run_sh
sh train.sh

the model will be saved in folder weight, tensorboard information will be saved in folder log. You can change the arguments in script such as --mask_type and --sampling_rate for different experiment settings.

for tensorboard:

check the training curves while training

tensorboard --logdir log

the training info of my experiments is already in log folder

for testing:

test after training, or you can download my trained model weights from google drive.

cd run_sh
sh test.sh

for visualization:

cd run_sh
sh visualize.sh

training curves

sampling rates : 10%(light orange), 20%(dark blue), 30%(dark orange), 40%(light blue). You can check more loss curves of my experiments using tensorboard.

loss_G_loss_total loss_recon_img_Aa

PSNR on training set over 500 epochs, compared with results shown in original paper.

my_train_psnr paper_train_psnr

Test results

mean PSNR on validation dataset with radial mask of different sampling rates, batch_size is set as 4;

model 10% 20% 30% 40%
zero-filled 22.296 25.806 28.997 31.699
RefineGAN 32.705 36.734 39.961 42.903

Test cases visualization

rate from left to right: mask, zero-filled, prediction and ground truth error (zero-filled) and error (prediction)
10%
20%
30%
40%

Notes on RefineGAN

  • data processing before training : complex value represents in 2-channel , each channel rescale to [-1,1]; accordingly the last layer of generator is tanh()
  • Generator uses residual learning for reconstruction task
  • Generator is a cascade of two U-net, the U-net doesn't do concatenation but addition when combining the enc and dec features.
  • each U-net is followed by a Data-consistency (DC) module, although the paper doesn't mention it.
  • the last layer of generator is tanh layer on two-channel output, so when we revert output to original pixel scale and calculate abs, the pixel value may exceed 255; we need to do clipping while calculating psnr
  • while training, we get two random image samples A, B for each iteration, RefineGAN calculates a large amount of losses (it may be redundant) including reconstruction loss on different phases of generator output in both image domain and frequency domain, total variantion loss and WGAN loss
  • one special loss is D_loss_AB, D is trained to only distinguish from real samples and fake samples, so D should not only work for (real A, fake A) or (real B, fake B), but also work for (real A, fake B) input
  • WGAN-gp may be used to improve the performance
  • small batch size MAY BE better. In my experiment, batch_size=4 is better than batch_size=16

I will appreciate if you can find any implementation mistakes in codes.

Owner
xinby17
research interest: Medical Image Analysis, Computer Vision
xinby17
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022