DilatedNet in Keras for image segmentation

Overview

Keras implementation of DilatedNet for semantic segmentation

A native Keras implementation of semantic segmentation according to Multi-Scale Context Aggregation by Dilated Convolutions (2016). Optionally uses the pretrained weights by the authors'.

The code has been tested on Tensorflow 1.3, Keras 1.2, and Python 3.6.

Using the pretrained model

Download and extract the pretrained model:

curl -L https://github.com/nicolov/segmentation_keras/releases/download/model/nicolov_segmentation_model.tar.gz | tar xvf -

Install dependencies and run:

pip install -r requirements.txt
# For GPU support
pip install tensorflow-gpu==1.3.0

python predict.py --weights_path conversion/converted/dilation8_pascal_voc.npy

The output image will be under images/cat_seg.png.

Converting the original Caffe model

Follow the instructions in the conversion folder to convert the weights to the TensorFlow format that can be used by Keras.

Training

Download the Augmented Pascal VOC dataset here:

curl -L http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz | tar -xvf -

This will create a benchmark_RELEASE directory in the root of the repo. Use the convert_masks.py script to convert the provided masks in .mat format to RGB pngs:

python convert_masks.py \
    --in-dir benchmark_RELEASE/dataset/cls \
    --out-dir benchmark_RELEASE/dataset/pngs

Start training:

python train.py --batch-size 2

Model checkpoints are saved under trained/, and can be used with the predict.py script for testing.

The training code is currently limited to the frontend module, and thus only outputs 16x16 segmentation maps. The augmentation pipeline does mirroring but not cropping or rotation.


Fisher Yu and Vladlen Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, 2016

Comments
  • training and validation loss nan

    training and validation loss nan

    First of all I just want to thank you for the great work. I am having an issue during training, my loss and val_loss is nan, however I am still getting values for accuracy and val_acc. I am training on the PASCAL_VOC 2012 dataset with the segmentation class pngs. rsz_screenshot_from_2017-08-09_17-24-13

    keras 1.2.1 & 2.0.6 tensorflow-gpu 1.2.1 python 3.6.1

    opened by Barfknecht 9
  • Fine tuning ...

    Fine tuning ...

    Hello,

    You have provided the pre-trained model of VOC. I have a small dataset with 2 classes, which I annotated based on VOC and I want to fine-tune it. Would you please guide me through the process?

    opened by MyVanitar 8
  • Modifying number of class

    Modifying number of class

    Hi Nicolov,

    Thanks for the great work! I tried to train new dataset by generating my own set of jpg and png masks. However I realized it only works for pre-defined 20 classes. For example I wanted to re-train this network to segment screws from background, I wasn't able to find way to add new classes but to use a existed color 0x181818 which was originally trained for cats. After training it did segmented the screw. However I'm still wondering is there any way to change the number of classes and specify which color value are associated with certain class?

    opened by francisbitontistudio 7
  • Black image after segmentation

    Black image after segmentation

    Hi! I have val accuracy = 1, but when i am trying to predict mask on the image from train set it displays me black image. Does anybody know what is the reason of this behaviour?

    opened by dimaxano 7
  • docker running error

    docker running error

    Hi, @nicolov ,

    For the caffe weight conversion, I got the following error:

    (tf_1.0) [email protected]:/data/code/segmentation_keras/conversion# docker run -v $(pwd):/workspace -ti `docker build -q .`
    Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
    "docker run" requires at least 1 argument(s).
    See 'docker run --help'.
    
    Usage:  docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
    
    Run a command in a new container
    (tf_1.0) ro[email protected]:/data/code/segmentation_keras/conversion#
    
    

    It shows that docker daemon is not running. Any other command should I input before it?

    Thanks

    opened by amiltonwong 7
  • the way of loading the weight

    the way of loading the weight

    Hi nicolov,

    In the post, you explained how to do the weight conversion. Due to the development environment constraints, it is a little bit hard for me to follow exactly your step.

    In keras blog, author also show a way to load VGG16 weight from Keras directly. Do you think this weight can be used for your implementation? Do we have to use the converted caffe model weight for pascal_voc. The data set I will be using is of different domain with the data set published in the paper. Thanks for your advice.

    capture

    opened by wenouyang 5
  • Problems with CuDNN library

    Problems with CuDNN library

    While running train.py, this is the error message: Epoch 1/20 E tensorflow/stream_executor/cuda/cuda_dnn.cc:378] Loaded runtime CuDNN library: 6021 (compatibility version 6000) but source was compiled with 5105 (compatibility version 5100). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.

    Since I don't have the root account, I can't install CuDNN v5. Do you know how I can fix this? Thanks!

    opened by Yuren-Zhong 4
  • IoU results

    IoU results

    Have you by any chance compared this to the original implementation with regards to the mean IoU? If so, what implementation of IoU did you use and what were your results?

    opened by Barfknecht 4
  • about the required pre-trained vgg model

    about the required pre-trained vgg model

    Hi, @nicolov ,

    According to this line, vgg_conv.npy is needed as pre-trained vgg model in training. Could you list the download location for corresponding caffemodel and prototxt file? And, is the conversion step the same as here?

    Thanks!

    opened by amiltonwong 4
  • regarding loading_weights

    regarding loading_weights

    Hi nicolov,

    In the train.py, you have included the function of load_weights(model, weights_path):. My understanding is that you are trying to load a pre-training vcg model. If I do not want to use this pretrained model because the problem I am working one may belong to a totally different domain, should I just skip calling this load_weights function? Or using a pre-trained model is always preferable, I am kind of confusing about this.

    In the notes, you mentioned that The training code is currently limited to the frontend module, and thus only outputs 16x16 segmentation maps. If I would like to leverage this code for my own data set, what are the modifications that I have to make? Do I still have to load the weights?

    Thank you very much!

    opened by wenouyang 4
  • Cannot locate Dockerfile: Dockerfile

    Cannot locate Dockerfile: Dockerfile

    Probably a rookie error but when I am trying to run the conversion step in conversion by running the docker I get the following error:

    $sudo docker run -v $(pwd):/workspace -ti `docker build -q .`
    time="2017-02-09T09:15:11-08:00" level=fatal msg="Cannot locate Dockerfile: Dockerfile" 
    docker: "run" requires a minimum of 1 argument. See 'docker run --help'.
    
    opened by mongoose54 4
  • Training freezes

    Training freezes

    On executing command: python train.py --batch-size 2 ,training freezes at last step of first epoch.

    All the libraries are according to the requirement.txt file

    opened by ghost 1
  • AtrousConvolution2D vs.Conv2DTranspose

    AtrousConvolution2D vs.Conv2DTranspose

    Hi @nicolov I was wondering whether in your model, you wouldn't need to have a Conv2DTranspose or Upsample layer to compensate for the maxpool and obtain predictions with the same size as your input image?

    opened by tinalegre 0
  • How to handle high resolution  images

    How to handle high resolution images

    Hello @nicolov ,

    let me first express my appreciation to your work in image segmentation its great (Y)

    small suggestion , i just want to notify you that there is a missing -- in input parsing . very minor change

    parser.add_argument('--input_path', nargs='?', default='images/cat.jpg',
                            help='Required path to input image') 
    

    I'm hoping you can help me in understanding how to handle high res images as 1028 and 4k ,

    also in the code i found you set input_width, input_height = 900, 900 and label_margin = 186 can you please illustrate what is the reason for this static number and how they effect on the output high and width

    output_height = input_height - 2 * label_margin
    output_width = input_width - 2 * label_margin
    
    opened by engahmed1190 2
  • Context module training implementation plans

    Context module training implementation plans

    Thanks for creating this implementation. Do you have any plans to implement training of the context module (to allow producing full resolution segmentation maps)?

    opened by OliverColeman 3
  • palette conversion not needed

    palette conversion not needed

    https://github.com/nicolov/segmentation_keras/blob/master/convert_masks.py isn't necessary.

    Just use Pillow and you can load the classes separately from the color palette, which means it will already be in the format you want!

    from https://github.com/aurora95/Keras-FCN/blob/master/utils/SegDataGenerator.py#L203

                    from PIL import Image
                    label = Image.open(label_filepath)
                    if self.save_to_dir and self.palette is None:
                        self.palette = label.palette
    

    cool right?

    opened by ahundt 6
Releases(caffemodel)
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022