Just Go with the Flow: Self-Supervised Scene Flow Estimation

Overview

Just Go with the Flow: Self-Supervised Scene Flow Estimation

Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation, CVPR 2020 (Oral).

Authors: Himangi Mittal, Brian Okorn, David Held

[arxiv] [Project Page]

Citation

If you find our work useful in your research, please cite:

@InProceedings{Mittal_2020_CVPR,
author = {Mittal, Himangi and Okorn, Brian and Held, David},
title = {Just Go With the Flow: Self-Supervised Scene Flow Estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Introduction

In this work, we propose a method of scene flow estimation using two self-supervised losses, based on nearest neighbors and cycle consistency. These self-supervised losses allow us to train our method on large unlabeled autonomous driving datasets; the resulting method matches current state-of-the-art supervised performance using no real world annotations and exceeds stateof-the-art performance when combining our self-supervised approach with supervised learning on a smaller labeled dataset.

For more details, please refer to our paper or project page.

Installation

Requirements

CUDA 9.0  
Tensorflow-gpu 1.9
Python 3.5
g++ 5.4.0

Steps

(a). Clone the repository.

git clone https://github.com/HimangiM/Self-Supervised-Scene-Flow-Estimation.git

(b). Install dependencies

Create a virtualenv
python3 -m venv sceneflowvenv
source sceneflowvenv/bin/activate
cd Self-Supervised-Scene-Flow-Estimation
pip install -r requirements.txt
Check for CUDA-9.0

(c). Compile the operations The TF operators are included under src/tf_ops. Check the CUDA compatability and edit the architecture accordingly in makefiles of each folder (tf_ops/sampling, tf_ops/grouping, tf_ops/3d_interpolation) The authors had used sm_61 as the architecture for CUDA-9.0. Finally, move into each directory and run make. Also, check for the path for CUDA-9.0 and edit the path in the makefiles of each folder. If this method throws error, then run bash make_tf_ops.sh sm_61.

Datasets

Download the kitti dataset from the Google Drive link. Each file is in the .npz format and has three keys: pos1, pos2 and gt, representing the first frame of point cloud, second frame of point cloud and the ground truth scene flow vectors for the points in the first frame. Create a folder with name data_preprocessing and download the kitti dataset in it. The dataset directory should look as follows:

Self-Supervised-Scene-Flow-Estimation
|--data_preprocessing
|  |--kitti_self_supervised_flow
|  |  |--train
|  |  |--test

The data preprocessing file to run the code on KITTI is present in the src folder: kitti_dataset_self_supervised_cycle.py. To create a dataloader for own dataset, refer to the script:

nuscenes_dataset_self_supervised_cycle.py

Training and Evaluation

To train on own dataset, refer to the scripts:

train_1nn_cycle_nuscenes.py
bash src/commands/command_train_cycle_nuscenes.sh

To evaluate on the KITTI dataset, execute the shell script:

bash src/commands/command_evaluate_kitti.sh

Link to the pretrained model.

Visualization

You can use Open3d to visualize the results. A sample script is given in visualization.py

Owner
Himangi Mittal
Research intern at CMU working in Vision, Robotics and Autonomous Driving
Himangi Mittal
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022