The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Overview

Prior-Enhanced network with Meta-Prototypes (PEMP)

This is the PyTorch implementation of PEMP.

  • Overview of PEMP

Framework

  • Meta-Prototypes & Adaptive Prototypes

meta-prototypes

1. Preliminaries

  • Ubuntu 18.04 (tested)
  • Geforce GTX 2080Ti or Tesla V100 (tested)

1.1 Setup Python Enveriment

# Install Python and packages
conda create -n torch python=3.7
source activate torch
conda install numpy=1.19.1
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 -c pytorch 
conda install tqdm scipy pymongo opencv
pip install sacred==0.8.2 dropblock==0.3.0 pycocotools

1.2 Manage Experiments

We utilize Sacred for managing experiments (both training and testing).

If the users only want to perform the inference on PEMP, feel free to skip this subsection and continue on preparing datasets.

If the users want to re-train PEMP, please refer to this for setting up the database and visualization tools.

1.3 Prepare Data & Pre-trained Models

Please refer to this for preparing the data and pre-trained models.

1.4 Project Structure

  • ./core/ contains the trainer, evaluator, losses, metrics and solver.
  • ./data/ contains the datasets and pre-trained weights of VGG and ResNet.
  • ./data_kits/ contains the data loaders.
  • ./entry/ contains the entry points of the supported models.
  • ./networks/ contains the network implementation of the supported models.
  • ./scripts/ contains the running scripts of the supported models.
  • ./http/ contains the backend and the frontend of the visualization tools.
  • ./utils/ contains a timer, a logger, and some helper functions.
  • ./config.py contains global configuration and device configuration.

1.5 Supports (References)

Supports Source Link
Datasets PASCAL-5i http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
COCO-20i https://cocodataset.org/
Models Baseline (ours)
PEMP (ours)
PANet https://github.com/kaixin96/PANet
CaNet (only 1-shot) https://github.com/icoz69/CaNet
RPMMs (only 1-shot) https://github.com/Yang-Bob/PMMs
PFENet https://github.com/Jia-Research-Lab/PFENet

2. Training and Testing

2.1 Reproducibility

For reproducing the results, please make sure:

  1. Install the exact versions of packages(python, numpy, pytorch, torchvision and cudatoolkit).

  2. Use the random seed 1234 for the packages(random, numpy and pytorch), which is the default setting in the released code.

  3. Finish the unittest of the data loaders and get OK to assert the random seed works:

    PYTHONPATH=./ python -m unittest data_kits.pascal_voc_test
    PYTHONPATH=./ python -m unittest data_kits.coco_test

2.2 Usage

  • Start the MongoDB and Omniboard first.

  • Basic usage

CUDA_VISIBLE_DEVICES="0" PYTHONPATH=./ python entry/<MODEL>.py <COMMAND> with <UPDATE>
  • Parameter explanation
# <MODEL>:
#     We support several models: baseline, pemp_stage1, pemp_stage2, panet, canet, pfenet
#
# <COMMAND>:
#     We define three commands: train, test, visualize
#     Sacred provide several commands: print_config, print_dependencies
#
# <UPDATE>:
#    The user can update parameters. Please run following command for help.
#        PYTHONPATH=./ python entry/pemp_stage1.py help train
#	     PYTHONPATH=./ python entry/pemp_stage1.py help test
#        PYTHONPATH=./ python entry/pemp_stage1.py help visualize

# Get help for all the parameters
PYTHONPATH=./ python entry/pemp_stage1.py print_config
  • For simplicity, we provide some scripts for running experiments
# Template:
# bash ./scripts/pemp_stage1.sh train 0 [split=0] [shot=1] [data.dataset=PASCAL] [-u] [-p]
# bash ./scripts/pemp_stage1.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [exp_id=1] [-u] [-p]
# bash ./scripts/pemp_stage2.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [s1.id=1] [exp_id=5] [-u] [-p]

# Step1: Training/Testing PEMP_Stage1
bash ./scripts/pemp_stage1.sh train 0 split=0
bash ./scripts/pemp_stage1.sh test 0 split=0 exp_id=<S1_ID>

# Step2: Training/Testing PEMP_Stage2
bash ./scripts/pemp_stage2.sh train 0 split=0 s1.id=<S1_ID>
bash ./scripts/pemp_stage1.sh test 0 split=0 s1.id=<S1_ID> exp_id=<S2_ID>

3. Results (ResNet-50)

  • PASCAL-5i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
Baseline 1 45.48 59.97 51.35 43.31 50.03 67.58
RPMMS 53.86 66.45 52.76 51.31 56.10 70.32
PEMP 55.74 65.88 54.12 50.34 56.52 71.41
Baseline 5 52.47 66.31 59.85 51.02 57.41 71.90
RPMMS 56.28 67.34 54.52 51.00 57.30 -
PEMP 58.59 69.10 60.31 53.01 60.25 73.84
  • COCO-20i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
RPMMS 1 29.53 36.82 28.94 27.02 30.58 -
PEMP 29.28 34.09 29.64 30.36 30.84 63.13
RPMMS 5 33.82 41.96 32.99 33.33 35.52 -
PEMP 39.08 44.59 39.54 41.42 41.16 70.71

4. Visualization

We provide a simple tool for visualizing the segmentation prediction and response maps (see the paper).

Visualization tool

4.1 Evaluate and Save Predictions

# With pre-trained model
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005

# A test run contains 1000 episodes. For fewer episodes, set the `data.test_n`
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005 data.test_n=100

The prediction and response maps are saved in the directory ./http/static.

4.2 Start the Backend

# Instal flask 
conda install flask

# Start backend
cd http
python backend.py

# For 5-shot
python backend_5shot.py

4.3 Start the Frontend

Open the address https://localhost:17002 for browsing the results. ( https://localhost:17003 for 5-shot results)

YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022