FairFuzz: AFL extension targeting rare branches

Related tags

Deep Learningafl-rb
Overview

FairFuzz

An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested structure (packet analyzers, xmllint, programs compiled with laf-inte, etc). AFL is written and maintained by Michal Zalewski [email protected]; FairFuzz extension by Caroline Lemieux [email protected].

Our paper on FairFuzz was published in ASE 2018.

Summary

This is a modified version of AFL which changes (1) the way in which AFL selects input for mutation and (2) the way in which AFL mutates inputs to target rare "branches" in the program under test. AFL keeps track of program coverage an input achieves by counting the number of times the input hits a Basic Block Transition (see AFL technical details for more detail). This basic block transition can be loosely associated with a branch in the control flow graph, thus we call refer to these transitions as branches.

On many benchmarks, this modification achieves faster branch coverage than AFL or AFLFast. The advantage seems particularly strong on programs structured with many nested conditional statements. The graphs below show the number of basic block transitions covered over 24 hours on 9 different benchmarks. Each run was repeated 20 times (one fuzzer only): the dark middle line is the average coverage achieved, and the bands represent 95% confidence intervals.

24 hour runs on benchmarks

Evaluation was conducted on on AFL 2.40b. All runs were done with no AFL dictionary: the emphasis on rare branches appears to yield better automated discovery of special sequences. On the tcpdump and xmllint benchmarks, FairFuzz was able to discover rare sequences over the 20 runs, which the other techniques did not discover. Over these 20 techniques each different technique, the number of runs finding portions of the sequence <!ATTLIST after 24 hours was:

subsequence AFL FidgetyAFL AFLFast.new FairFuzz
<!A 7 15 18 17
<!AT 1 2 3 11
<!ATT 1 0 0 1

More details in article.

Technical Summary

What is a rare branch?

We consider a branch to be rare if it is hit by fewer inputs than the other branches explored so far. We maintain a dynamic threshold for rarity: if a branch is hit by fewer inputs than (or exactly as many as) this threshold, it is rare. Precisely, the threshold is the lowest power of two bounding the number of inputs hitting the least-hit branch. For example, if the branch hit by the fewest inputs is hit by 19 inputs, the threshold will be 32, so any branch hit by ≤32 inputs will be rare. Once the rarest branch is hit by 33 inputs, the threshold will go up to 64.

To keep track of rarity information, after running every input, we increment a hit count for each branch.

How are inputs hitting rare branches selected?

When going through the queue to select inputs to mutate, FairFuzz selects inputs only if -- at the time of selection -- they hit a rare branch. The rare branch an input hits is selected as the target branch. If an input hits multiple rare branches, FairFuzz selects the rarest one (the one hit by the fewest inputs) as the target branch. If an input hits no rare branches, it is skipped (see the -q option below).

How are mutations targeted to a branch?

Once an input is selected from the queue, along with its designated target branch, FairFuzz computes a branch mask for the target branch. For every position in the input, the branch mask designates whether

  1. the byte at that position can be overwritten (overwritable),
  2. the byte at that position can be deleted (deleteable), or
  3. a byte can be inserted at that position (insertable),

while still hitting the target branch. FairFuzz computes an approximation to this branch mask dynamically, in a way similar to AFL's effector map. FairFuzz goes through the input, and at each position flips the byte, deletes the byte, or inserts a byte, then runs the mutated input to check whether it hits the target branch. If the mutated input hits the target branch, the position is marked as overwritable, deleteable, or insertable, respectively.

The branch mask is then used to influence mutations as follows:

  1. In the deterministic stages1, a mutation is only performed at a location if the branch mask designates the position as overwritable (or insertable, for dictionary element insert). For multi-byte modifications, a modification is only performed if all bytes are overwritable. The mask is used in conjunction with the effector map when the effector map is used.
  2. In the havoc stage, positions for mutations are randomly selected within the modifiable positions of the branch mask. For example, if bytes 5-10 and 13-20 in a 20-byte input can be overwritten without failing to hit the target branch, when randomly selecting a byte to randomly mutate, FairFuzz will randomly select a position in [5,6,7,8,9,10,13,...,20] to mutate. After a havoc mutation that deletes (resp. adds) a sequence of bytes in the input, FairFuzz deletes the sequence (resp. adds an "all modifiable" sequence) at the corresponding location in the branch mask.2 The branch mask becomes approximate after this point.

1 The mask is not used in the bitflipping stage since this would interfere with AFL's automatic detection of dictionary elements.

2 The mask is not used to determine where to splice inputs in the splicing stage: during splicing, the first part of the branch mask is kept, but the spliced half of the input is marked as all modifiable.

Usage summary

For basic AFL usage, see the README in docs/ (the one with no .md extension). There are four FairFuzz Rare Branches-specific options:

Running options (may be useful for functionality):

  • -r adds an additional trimming stage before mutating inputs. This trimming is more aggressive than AFL's, trimming the input down only according to the target branch -- the resulting trimmed input may have a different path than the original input, but will still hit the target branch. Recommended for use if there are very large seed files and deterministic mutations are being run.
  • -q num bootstraps the rare branch input selection from the queue with the regular AFL input selection mechanism. If after an entire cycle through the queue, no new branches are discovered, bootstrap according to num as follows:
    • -q 1 go back to regular AFL queueing + no branch mask on mutations until a new branch is found
    • -q 2 go back to regular AFL queueing + no branch mask on mutations + no deterministic mutations until a new branch is found
    • -q 3 go back to regular AFL queueing + no branch mask on mutations for a single queueing cycle

Evaluation options (mostly useful for comparing AFL versions):

  • -b disables the branch mask. (sets every position in the mask as modifiable -- will incur unnecessary slowdown compared to AFL)
  • -s runs a "shadow" mutation run before the branch-mask enabled run. Side effects are disabled in this run. This allows for direct comparison of the effect of the branch mask on new coverage discovered/number of inputs hitting the target branch. See min-branch-fuzzing.log produced in the AFL output directory for details.
Owner
Caroline Lemieux
Caroline Lemieux
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022