[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

Overview

MuVER

This repo contains the code and pre-trained model for our EMNLP 2021 paper:
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations. Xinyin Ma, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Weiming Lu

Quick Start

1. Requirements

The requirements for our code are listed in requirements.txt, install the package with the following command:

pip install -r requirements.txt

For huggingface/transformers, we tested it under version 4.1.X and 4.2.X.

2. Download data and model

3. Use the released model to reproduce our results

  • Without View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score

Expected Result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6208 0.7783 0.8592 0.8983 0.9342 0.9533 0.9633 0.9700
lego 0.4904 0.6714 0.7690 0.8357 0.8791 0.9091 0.9208 0.9249
star_trek 0.4743 0.6130 0.6967 0.7606 0.8159 0.8581 0.8805 0.8919
yugioh 0.3432 0.4861 0.6040 0.7004 0.7596 0.8201 0.8512 0.8672
total 0.4496 0.5970 0.6936 0.7658 0.8187 0.8628 0.8854 0.8969
  • With View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128 
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score
    --view_expansion  
    --merge_layers 4  
    --top_k 0.4

Expected result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6175 0.7867 0.8733 0.9150 0.9375 0.9600 0.9675 0.9708
lego 0.5046 0.6889 0.7882 0.8449 0.8882 0.9183 0.9324 0.9374
star_trek 0.4810 0.6253 0.7121 0.7783 0.8271 0.8706 0.8935 0.9030
yugioh 0.3444 0.5027 0.6322 0.7300 0.7902 0.8429 0.8690 0.8826
total 0.4541 0.6109 0.7136 0.7864 0.8352 0.8777 0.8988 0.9084

Optional Argument:

  • --data_parallel: whether you want to use multiple gpus.
  • --accumulate_score: accumulate score for each entity. Obtain a higher score but will take much time to inference.
  • --view_expansion: whether you want to merge and expand view.
  • --top_k: top_k pairs are expected to merge in each layer.
  • --merge_layers: the number of layers for merging.
  • --test_mode: If you want to generate candidates for train/dev set, change the test_mode to train or dev, which will generate candidates outputs and save it under the directory where you save the test model.

4. How to train your MuVER

We provice the code to train your MuVER. Train the code with the following command:

export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --epoch 30 
    --train_batch_size 128 
    --learning_rate 1e-5 
    --do_train --do_eval 
    --data_parallel 
    --name distributed_multi_view

Important: Since constrastive learning relies heavily on a large batch size, as reported in our paper, we use eight v100(16g) to train our model. The hyperparameters for our best model are in logs/zeshel_hyper_param.txt

The code will create a directory runtime_log to save the log, model and the hyperparameter you used. Everytime you trained your model(with or without grid search), it will create a directory under runtime_log/name_in_your_args/start_time, e.g., runtime_log/distributed_multi_view/2021-09-07-15-12-21, to store all the checkpoints, curve for visualization and the training log.

Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022