Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Related tags

Deep LearningDeDLOC
Overview

Distributed Deep Learning in Open Collaborations

This repository contains the code for the NeurIPS 2021 paper

"Distributed Deep Learning in Open Collaborations"

Michael Diskin*, Alexey Bukhtiyarov*, Max Ryabinin*, Lucile Saulnier, Quentin Lhoest, Anton Sinitsin, Dmitry Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, Gennady Pekhimenko

Link: ArXiv

Note

This repository contains a snapshot of the code used to conduct experiments in the paper.

Please use the up-to-date version of our library if you want to try out collaborative training and/or set up your own experiment. It contains many substantial improvements, including better documentation and fixed bugs.

Installation

Before running the experiments, please set up the environment by following the steps below:

  • Prepare an environment with python 3.7-3.9. Anaconda is recommended, but not required
  • Install the hivemind library from the master branch or by running pip install hivemind==0.9.9.post1

For all distributed experiments, the installation procedure must be repeated on every machine that participates in the experiment. We recommend using machines with at least 2 CPU cores, 16 GB RAM and, when applicable, a low/mid-tier NVIDIA GPU.

Experiments

The code is divided into several sections matching the corresponding experiments:

  • albert contains the code for controlled experiments with ALBERT-large on WikiText-103;
  • swav is for training SwAV on ImageNet data;
  • sahajbert contains the code used to conduct a public collaborative experiment for the Bengali language ALBERT;
  • p2p is a step-by-step tutorial that explains decentralized NAT traversal and circuit relays.

We recommend running albert experiments first: other experiments build on top of its code and may reqire more careful setup (e.g. for public participation). Furthermore, for this experiment, we provide a script for launching experiments using preemptible GPUs in the cloud.

Acknowledgements

This project is the result of a collaboration between Yandex, Hugging Face, MIPT, HSE University, University of Toronto, Vector Institute, and Neuropark.

We also thank Stas Bekman, Dmitry Abulkhanov, Roman Zhytar, Alexander Ploshkin, Vsevolod Plokhotnyuk and Roman Kail for their invaluable help with building the training infrastructure. Also, we thank Abhishek Thakur for helping with downstream evaluation and Tanmoy Sarkar with Omar Sanseviero, who helped us organize the collaborative experiment and gave regular status updates to the participants over the course of the training run.

Contacts

Feel free to ask any questions in our Discord chat or by email.

Citation

@inproceedings{diskin2021distributed,
    title = {Distributed Deep Learning In Open Collaborations},
    author = {Michael Diskin and Alexey Bukhtiyarov and Max Ryabinin and Lucile Saulnier and Quentin Lhoest and Anton Sinitsin and Dmitry Popov and Dmitriy Pyrkin and Maxim Kashirin and Alexander Borzunov and Albert Villanova del Moral and Denis Mazur and Ilia Kobelev and Yacine Jernite and Thomas Wolf and Gennady Pekhimenko},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
    year = {2021},
    url = {https://openreview.net/forum?id=FYHktcK-7v}
}
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021