[NeurIPS'20] Multiscale Deep Equilibrium Models

Related tags

Deep Learningmdeq
Overview

Multiscale Deep Equilibrium Models

💥 💥 💥 💥

This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simpler & more efficient) implementation of MDEQ with the same set of tasks as here is now available in the DEQ repo.

We STRONGLY recommend using with the MDEQ-Vision code in the DEQ repo (which also supports Jacobian-related analysis).

💥 💥 💥 💥


This repository contains the code for the multiscale deep equilibrium (MDEQ) model proposed in the paper Multiscale Deep Equilibrium Models by Shaojie Bai, Vladlen Koltun and J. Zico Kolter.

Is implicit deep learning relevant for general, large-scale pattern recognition tasks? We propose the multiscale deep equilibrium (MDEQ) model, which expands upon the DEQ formulation substantially to introduce simultaneous equilibrium modeling of multiple signal resolutions. Specifically, MDEQ solves for and backpropagates through synchronized equilibria of multiple feature representation streams. Such structure rectifies one of the major drawbacks of DEQ, and provide natural hierarchical interfaces for auxiliary losses and compound training procedures (e.g., pretraining and finetuning). Our experiment demonstrate for the first time that "shallow" implicit models can scale to and achieve near-SOTA results on practical computer vision tasks (e.g., megapixel images on Cityscapes segmentation).

We provide in this repo the implementation and the links to the pretrained classification & segmentation MDEQ models.

If you find thie repository useful for your research, please consider citing our work:

@inproceedings{bai2020multiscale,
    author    = {Shaojie Bai and Vladlen Koltun and J. Zico Kolter},
    title     = {Multiscale Deep Equilibrium Models},
    booktitle   = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2020},
}

Overview

The structure of a multiscale deep equilibrium model (MDEQ) is shown below. All components of the model are shown in this figure (in practice, we use n=4).

Examples

Some examples of MDEQ segmentation results on the Cityscapes dataset.

Requirements

PyTorch >=1.4.0, torchvision >= 0.4.0

Datasets

  • CIFAR-10: We download the CIFAR-10 dataset using PyTorch's torchvision package (included in this repo).
  • ImageNet We follow the implementation from the PyTorch ImageNet Training repo.
  • Cityscapes: We download the Cityscapes dataset from its official website and process it according to this repo. Cityscapes dataset additionally require a list folder that aligns each original image with its corresponding labeled segmented image. This list folder can be downloaded here.

All datasets should be downloaded, processed and put in the respective data/[DATASET_NAME] directory. The data/ directory should look like the following:

data/
  cityscapes/
  imagenet/
  ...          (other datasets)
  list/        (see above)

Usage

All experiment settings are provided in the .yaml files under the experiments/ folder.

To train an MDEQ classification model on ImageNet/CIFAR-10, do

python tools/cls_train.py --cfg experiments/[DATASET_NAME]/[CONFIG_FILE_NAME].yaml

To train an MDEQ segmentation model on Cityscapes, do

python -m torch.distributed.launch --nproc_per_node=4 tools/seg_train.py --cfg experiments/[DATASET_NAME]/[CONFIG_FILE_NAME].yaml

where you should provide the pretrained ImageNet model path in the corresponding configuration (.yaml) file. We provide a sample pretrained model extractor in pretrained_models/, but you can also write your own script.

Similarly, to test the model and generate segmentation results on Cityscapes, do

python tools/seg_test.py --cfg experiments/[DATASET_NAME]/[CONFIG_FILE_NAME].yaml

You can (and probably should) initiate the Cityscapes training with an ImageNet-pretrained MDEQ. You need to extract the state dict from the ImageNet checkpointed model, and set the MODEL.PRETRAINED entry in Cityscapes yaml file to this state dict on disk.

The model implementation and MDEQ's algorithmic components (e.g., L-Broyden's method) can be found in lib/.

Pre-trained Models

We provide some reasonably good pre-trained weights here so that one can quickly play with DEQs without training from scratch.

Description Task Dataset Model
MDEQ-XL ImageNet Classification ImageNet download (.pkl)
MDEQ-XL Cityscapes(val) Segmentation Cityscapes download (.pkl)
MDEQ-Small ImageNet Classification ImageNet download (.pkl)
MDEQ-Small Cityscapes(val) Segmentation Cityscapes download (.pkl)

I. Example of how to evaluate the pretrained ImageNet model:

  1. Download the pretrained ImageNet .pkl file. (I recommend using the gdown command!)
  2. Put the model under pretrained_models/ folder with some file name [FILENAME].
  3. Run the MDEQ classification validation command:
python tools/cls_valid.py --testModel pretrained_models/[FILENAME] --cfg experiments/imagenet/cls_mdeq_[SIZE].yaml

For example, for MDEQ-Small, you should get >75% top-1 accuracy.

II. Example of how to use the pretrained ImageNet model to train on Cityscapes:

  1. Download the pretrained ImageNet .pkl file.
  2. Put the model under pretrained_models/ folder with some file name [FILENAME].
  3. In the corresponding experiments/cityscapes/seg_MDEQ_[SIZE].yaml (where SIZE is typically SMALL, LARGE or XL), set MODEL.PRETRAINED to "pretrained_models/[FILENAME]".
  4. Run the MDEQ segmentation training command (see the "Usage" section above):
python -m torch.distributed.launch --nproc_per_node=[N_GPUS] tools/seg_train.py --cfg experiments/cityscapes/seg_MDEQ_[SIZE].yaml

III. Example of how to use the pretrained Cityscapes model for inference:

  1. Download the pretrained Cityscapes .pkl file
  2. Put the model under pretrained_models/ folder with some file name [FILENAME].
  3. In the corresponding experiments/cityscapes/seg_MDEQ_[SIZE].yaml (where SIZE is typically SMALL, LARGE or XL), set TEST.MODEL_FILE to "pretrained_models/[FILENAME]".
  4. Run the MDEQ segmentation testing command (see the "Usage" section above):
python tools/seg_test.py --cfg experiments/cityscapes/seg_MDEQ_[SIZE].yaml

Tips:

  • To load the Cityscapes pretrained model, download the .pkl file and specify the path in config.[TRAIN/TEST].MODEL_FILE (which is '' by default) in the .yaml files. This is different from setting MODEL.PRETRAINED, see the point below.
  • The difference between [TRAIN/TEST].MODEL_FILE and MODEL.PRETRAINED arguments in the yaml files: the former is used to load all of the model parameters; the latter is for compound training (e.g., when transferring from ImageNet to Cityscapes, we want to discard the final classifier FC layers).
  • The repo supports checkpointing of models at each epoch. One can resume from a previously saved checkpoint by turning on the TRAIN.RESUME argument in the yaml files.
  • Just like DEQs, the MDEQ models can be slower than explicit deep networks, and even more so as the image size increases (because larger images typically require more Broyden iterations to converge well; see Figure 5 in the paper). But one can play with the forward and backward thresholds to adjust the runtime.

Acknowledgement

Some utilization code (e.g., model summary and yaml processing) of this repo were modified from the HRNet repo and the DEQ repo.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022