🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

Overview

MoT - Molecular Transformer

Large-scale Pretraining for Molecular Property Prediction

Samsung AI Challenge for Scientific Discovery

This repository is an official implementation of a model which won first place in the Samsung AI Challenge for Scientific Discovery competition and was introduced at SAIF 2021. The result of the challenge was announced at this video.

Introduction

MoT is a transformer-based model for predicting molecular properties from its 3D molecular structure. It was first introduced to calculate the excitation energy gap between S1 and T1 states by the molecular structure.

Requirements

Before running this project, you need to install the below libraries:

  • numpy
  • pandas
  • torch==1.9.0+cu111
  • tqdm
  • wandb
  • dataclasses
  • requests
  • omegaconf
  • pytorch_lightning==1.4.8
  • rdkit-pypi
  • scikit_learn

This project supports NVIDIA Apex. It will be automatically detected and used to accelerate training when installed. apex reduces the training time up to 50%.

setup.sh helps installing necessary libraries, including apex. It installs the requirements and apex at once. You can simply run the script as follows:

$ bash setup.sh

About Molecular Transformer

There are many apporaches to predict the molecular properties. However, for the case of calculating excitation energy gaps (e.g. between S1 to T1 states), it is necessary to consider the entire 3D structure and the charge of atoms in the compound. But many transformer-based molecular models use SMILES (or InChI) format. We also tried text-based methods in the competition, but the graph-based models showed better performance.

The important thing is to consider all connections between the atoms in the compound. However, the atoms are placed in 3D coordinate system, and it is almost impossible to feed 3D positional informations to the model (and adding 3d positional embeddings was worse than the baseline). So we designed new attention method, inspired by disentangled attention in DeBERTa.

First of all, the type of atoms and their charges will be embedded to the vectors and summed. Note that the positional embeddings will not be used to the input because attention layers will calculate the attention scores relatively. And thanks to the absence of the positional embeddings, there is no limit to the number of atoms.

The hidden representations will be attended by the attention layers. Similar to the disentangled attention introduced in DeBERTa, our relative attention is performed not only for contents, but also between relative informations and the contents. The relative informations include relative distances and the type of bonds between the atoms.

The relative information R is calculated as above. The euclidean distances are encoded through sinusoidal encoding, with modified period (from 10000 to 100). The bond type embeddings can be described as below:

The important thing is disconnections (i.e. there is no bond between two certain atoms) should be embedded as index 0, rather than excluded from attention. Also [CLS] tokens are separated from other normal bond-type embeddings on relative attention.

According to the above architecture, the model successfully focuses on the relations of the atoms. And similar to the other transformer-based models, it also shows that pretraining from large-scale dataset achieves better performance, even with few finetuning samples. We pretrained our model with PubChem3D (50M) and PubChemQC (3M). For PubChem3D, the model was trained to predict conformer-RMSD, MMFF94 energy, shape self-overlap, and feature self-overlap. For PubChemQC, the model was trained to predict the singlet excitation energies from S1 to S10 states.

Reproduction

To reproduce our results on the competition or pretrain a new model, you should follow the below steps. A large disk and high-performance GPUs (e.g. A100s) will be required.

Download PubChem3D and PubChemQC

First of all, let's download PubChem3D and PubChemQC datasets. The following commands will download the datasets and format to the specific dataset structure.

$ python utilities/download_pubchem.py
$ python utilities/download_pubchemqc.py

Although we used 50M PubChem3D compounds, you can use full 100M samples if your network status and the client are available while downloading.

After downloading all datasets, we have to create index files which indicate the seeking position of each sample. Because the dataset size is really large, it is impossible to load the entire data to the memory. So our dataset will access the data randomly using this index files.

$ python utilities/create_dataset_index.py pubchem-compound-50m.csv
$ python utilities/create_dataset_index.py pubchemqc-excitations-3m.csv

Check if pubchem-compound-50m.index and pubchemqc-excitations-3m.index are created.

Training and Finetuning

Now we are ready to train MoT. Using the datasets, we are going to pretrain new model. Move the datasets to pretrain directory and also change the working directory to pretrain. And type the below commands to pretrain for PubChem3D and PubChemQC datasets respectively. Note that PubChemQC-pretraining will use PubChem3D-pretrained model weights.

$ python src/train.py config/mot-base-pubchem.yaml
$ python src/train.py config/mot-base-pubchemqc.yaml

Check if mot-base-pubchem.pth and mot-base-pubchemqc.pth are created. Next, move the final output weights file (mot-base-pubchemqc.pth) to finetune directory. Prepare the competition dataset samsung-ai-challenge-for-scientific-discovery to the same directory and start finetuning by using below command:

$ python src/train.py config/train/mot-base-pubchemqc.yaml  \
        data.fold_index=[fold index]                        \
        model.random_seed=[random seed]

We recommend to train the model for 5 folds with various random seeds. It is well known that the random seed is critial to transformer finetuning. You can tune the random seed to achieve better results.

After finetuning the models, use following codes to predict the energy gaps through test dataset.

$ python src/predict.py config/predict/mot-base-pubchemqc.yaml \
        model.pretrained_model_path=[finetuned model path]

And you can see the prediction file of which name is same as the model name. You can submit the single predictions or average them to get ensembled result.

$ python utilities/simple_ensemble.py finetune/*.csv [output file name]

Finetune with custom dataset

If you want to finetune with custom dataset, all you need to do is to rewrite the configuration file. Note that finetune directory is considered only for the competition dataset. So the entire training codes are focused on the competition data structure. Instead, you can finetune the model with your custom dataset on pretrain directory. Let's check the configuration file for PubChemQC dataset which is placed at pretrain/config/mot-base-pubchemqc.yaml.

data:
  dataset_file:
    label: pubchemqc-excitations-3m.csv
    index: pubchemqc-excitations-3m.index
  input_column: structure
  label_columns: [s1_energy, s2_energy, s3_energy, s4_energy, s5_energy, s6_energy, s7_energy, s8_energy, s9_energy, s10_energy]
  labels_mean_std:
    s1_energy: [4.56093558, 0.8947327]
    s2_energy: [4.94014921, 0.8289951]
    s3_energy: [5.19785427, 0.78805644]
    s4_energy: [5.39875606, 0.75659831]
    s5_energy: [5.5709758, 0.73529373]
    s6_energy: [5.71340364, 0.71889017]
    s7_energy: [5.83764871, 0.70644563]
    s8_energy: [5.94665475, 0.6976438]
    s9_energy: [6.04571037, 0.69118142]
    s10_energy: [6.13691953, 0.68664366]
  max_length: 128
  bond_drop_prob: 0.1
  validation_ratio: 0.05
  dataloader_workers: -1

model:
  pretrained_model_path: mot-base-pubchem.pth
  config: ...

In the configuration file, you can see data.dataset_file field. It can be changed to the desired finetuning dataset with its index file. Do not forget to create the index file by utilities/create_dataset_index.py. And you can specify the column name which contains the encoded 3D structures. data.label_columns indicates which columns will be used to predict. The values will be normalized by data.labels_mean_std. Simply copy this file and rename to your own dataset. Change the name and statistics of each label. Here is an example for predicting toxicity values:

data:
  dataset_file:
    label: toxicity.csv
    index: toxicity.index
  input_column: structure
  label_columns: [toxicity]
  labels_mean_std:
    toxicity: [0.92, 1.85]
  max_length: 128
  bond_drop_prob: 0.0
  validation_ratio: 0.1
  dataloader_workers: -1

model:
  pretrained_model_path: mot-base-pubchemqc.pth
  config:
    num_layers: 12
    hidden_dim: 768
    intermediate_dim: 3072
    num_attention_heads: 12
    hidden_dropout_prob: 0.1
    attention_dropout_prob: 0.1
    position_scale: 100.0
    initialize_range: 0.02

train:
  name: mot-base-toxicity
  optimizer:
    lr: 1e-4
    betas: [0.9, 0.999]
    eps: 1e-6
    weight_decay: 0.01
  training_steps: 100000
  warmup_steps: 10000
  batch_size: 256
  accumulate_grads: 1
  max_grad_norm: 1.0
  validation_interval: 1.0
  precision: 16
  gpus: 1

Results on Competition Dataset

Model PubChem PubChemQC Competition LB (Public/Private)
ELECTRA 0.0493 0.1508/−
BERT Regression 0.0074 0.0497 0.1227/−
MoT-Base (w/o PubChem) 0.0188 0.0877/−
MoT-Base (PubChemQC 150k) 0.0086 0.0151 0.0666/−
    + PubChemQC 300k " 0.0917 0.0526/−
    + 5Fold CV " " 0.0507/−
    + Ensemble " " 0.0503/−
    + Increase Maximum Atoms " " 0.0497/0.04931

Description: Comparison results of various models. ELECTRA and BERT Regression are SMILES-based models which are trained with PubChem-100M (and PubChemQC-3M for BERT Regression only). ELECTRA is trained to distinguish fake SMILES tokens (i.e., ELECTRA approach) and BERT Regression is trained to predict the labels, without unsupervised learning. PubChemQC 150k and 300k denote that the model is trained for 150k and 300k steps in PubChemQC stage.

Utilities

This repository provides some useful utility scripts.

  • create_dataset_index.py: As mentioned above, it creates seeking positions of samples in the dataset for random accessing.
  • download_pubchem.py and download_pubchemqc.py: Download PubChem3D and PubChemQC datasets.
  • find_test_compound_cids.py: Find CIDs of the compounds in test dataset to prevent from training the compounds. It may occur data-leakage.
  • simple_ensemble.py: It performs simple ensemble by averaging all predictions from various models.

License

This repository is released under the Apache License 2.0. License can be found in LICENSE file.

A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Atif Hassan 103 Dec 14, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021