PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

Related tags

Deep Learningperffuzz
Overview

PerfFuzz

Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how can we find these inputs in the first place? PerfFuzz can generate such inputs automatically: given a program and at least one seed input, PerfFuzz automatically generates inputs that exercise pathological behavior across program locations, without any domain knowledge.

PerfFuzz uses multi-dimensional performance feedback and independently maximizes execution counts for all program locations. This enables PerfFuzz to find a variety of inputs that exercise distinct hot spots in a program.

Read the ISSTA paper for more details.

Built by Caroline Lemieux ([email protected]) and Rohan Padhye ([email protected]) on top of Michal Zalewski's ([email protected]) AFL.

Building PerfFuzz

To build on *nix machines, run

make

in the perffuzz directory. Since PerfFuzz is built on AFL, it will not build on Windows machines. You will also need to build PerfFuzz's instrumenting compiler, which can be done by running

cd llvm_mode
make
cd ..

in the perffuzz directory, after having built PerfFuzz.

  • Q: What version of clang should I use?

  • A: PerfFuzz was evaluated with clang-3.8.0 on Linux and works with verison 8 on Mac. To experiment with different clang/LLVM version, add the bin/ directory from the pre-build clang archives to the front of your PATH when compiling.

  • Q: I'm getting an error involving the -fno-rtti option.

  • A: If you're on Redhat Linux, this may be a gcc/clang compatibility issue. Apparently gcc-4.7 fixes the issue.

Test PerfFuzz on Insertion Sort

To check whether PerfFuzz is working correctly, try running it on the insertion sort benchmark provided. The following commands assume you are in the PerfFuzz directory.

Build

First, compile the benchmark:

./afl-clang-fast insertion-sort.c -o isort

Run PerfFuzz

Let's make some seeds for PerfFuzz to start with:

mkdir isort-seeds
head -c 64 /dev/zero > isort-seeds/zeroes

Now we can run PerfFuzz:

./afl-fuzz -p -i isort-seeds -o isort_perf_test/ -N 64 ./isort @@

You should see the number of total paths (this is a misnomer; it's just the number of saved inputs) increase consistently. You can also check to see if the saved inputs are heading towards a worst-case by running

for i in isort_perf_test/queue/id*; do ./isort $i | grep comps; done

(which, for each saved input, plots the number of comparisons insertion sort performed while sorting that input)

For comparison with the performance compared to regular afl, you can run: ./afl-fuzz -i isort-seeds -o isort_afl_test/ -N 64 ./isort @@ without the -p option, this should just run regular AFL. You should see total_paths quickly topping out around ~20 or so, and the number of cycles increase a lot. There will probably be much fewer comparisons performed for the saved inputs as well. The highest number of comparisons printed when you run:

for i in isort_afl_test/queue/id*; do ./isort $i | grep comps; done

should be smaller than what you saw for the inputs in isort_perf_test/queue.

Running PerfFuzz on a program of your choice

Compile your program with PerfFuzz

To compile your C/C++ program with perffuzz, replace CC (resp. CXX) with path/to/perffuzz/afl-clang-fast (resp. path/to/perffuzz/afl-clang-fast++) in your build process. See section (3) of README (not README.md) for more details, replacing references of path/to/afl/afl-gcc with path/to/perffuzz/afl-clang-fast.

  • Q: afl-clang-fast doesn't exist!
  • A: make sure you ran make in the llvm_mode directory (see "Building PerfFuzz")

Run PerfFuzz on your program.

In short, follow the instructions in README (regular AFL readme) section 6, but add the -p option to enable PerfFuzz, and the -N num option to restrict the size of produced inputs to a maximum file size of num. Make sure your initial seed inputs (in the input directory) are of smaller size than num bytes!

On many programs (including the benchmarks in the paper), the -d option (Fidgety mode) offers better performance.

Let PerfFuzz run for as long as you like: we ran for a few hours on larger benchmarks.

Interpret PerfFuzz results.

In the queue directory of the ouput directory, inputs postfixed with +max were saved because the maximized a performance key.

We provide some tools to help analyze the results. Notably, afl-showmax can print:

  1. The total path length (default)
  2. The maximum hotspot (-x option)
  3. The entire performance map in a key:value format (-a option)

To build afl-showmax, run

make afl-showmax

in the PerfFuzz directory.

You might also like...
This repository contains the code for the paper
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model training, like the model indices and unexpected interrupts. Then you can do something in time for your work.

An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Comments
  • test of llvm_mode fails

    test of llvm_mode fails

    Hi,

    On a recent Arch Linux, when building llvm_mode, I'm getting:

    [email protected]:llvm_mode$ make
    [*] Checking for working 'llvm-config'...
    [*] Checking for working 'clang'...
    [*] Checking for '../afl-showmap'...
    [+] All set and ready to build.
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  afl-clang-fast.c -o ../afl-clang-fast 
    ln -sf afl-clang-fast ../afl-clang-fast++
    clang++ `llvm-config --cxxflags` -fno-rtti -fpic -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DVERSION=\"2.52b\" -Wno-variadic-macros -shared afl-llvm-pass.so.cc -o ../afl-llvm-pass.so `llvm-config --ldflags` 
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  -fPIC -shared afl-catch-dlclose.so.c -o ../afl-catch-dlclose.so
    clang -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  -fPIC -c afl-llvm-rt.o.c -o ../afl-llvm-rt.o
    afl-llvm-rt.o.c:99:20: warning: incompatible pointer types assigning to 'u32 *' (aka 'unsigned int *') from 'u8 *' (aka 'unsigned char *') [-Wincompatible-pointer-types]
        __afl_perf_ptr = &__afl_area_ptr[MAP_SIZE];
                       ^ ~~~~~~~~~~~~~~~~~~~~~~~~~
    1 warning generated.
    [*] Building 32-bit variant of the runtime (-m32)... success!
    [*] Building 64-bit variant of the runtime (-m64)... success!
    [*] Testing the CC wrapper and instrumentation output...
    unset AFL_USE_ASAN AFL_USE_MSAN AFL_INST_RATIO; AFL_QUIET=1 AFL_PATH=. AFL_CC=clang ../afl-clang-fast -O3 -funroll-loops -Wall -D_FORTIFY_SOURCE=2 -g -Wno-pointer-sign -DAFL_PATH=\"/usr/local/lib/afl\" -DBIN_PATH=\"/usr/local/bin\" -DVERSION=\"2.52b\"  ../test-instr.c -o test-instr 
    echo 0 | ../afl-showmap -m none -q -o .test-instr0 ./test-instr
    echo 1 | ../afl-showmap -m none -q -o .test-instr1 ./test-instr
    
    Oops, the instrumentation does not seem to be behaving correctly!
    
    Please ping <[email protected]> to troubleshoot the issue.
    
    make: *** [Makefile:105: test_build] Error 1**
    

    It was a full normal compile, so I'm a bit confused. Is the test incorrectly set up for perffuzz and hasn't been changed/fixed?

    opened by msoos 7
  • Prioritize maximizing values with more granularity

    Prioritize maximizing values with more granularity

    Some values in the key: value map may be more worth increasing than others (either more interesteing, or others may just not increase). Two ideas:

    1. Favour based on the key achieving maximum value (similar to afl-rb's minimizing branch hits)
    2. Favour based on whether value is actually increasing.
    opened by carolemieux 3
  • What is Perf_Mask in the instrumentation pass?

    What is Perf_Mask in the instrumentation pass?

    Hey, I am trying to do some thing new on PerfFuzz. But there is one thing in the code I am confused.

    What is the purpose of this Perf_Mask? https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L129

    I don't think it is correct to add Perf_Mask to Edge_Id to create a GEP instruction in PerfBranchPtr https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L176 https://github.com/carolemieux/perffuzz/blob/f937f370555d0c54f2109e3b1aa5763f8defe337/llvm_mode/afl-llvm-pass.so.cc#L177

    However, EdgeId % PERF_SIZE is acctually needed to index the perf map.

    Looking forward to your reply, thanks.

    opened by zhanggenex 1
  • Rename staleness

    Rename staleness

    Find a new name for staleness which is either (1) more intuitive or (2) involves the use of the word "gradient".

    Suggestions What we currently use as staleness is really the inverse of what all these things could be...

    • magnitude-agnostic gradient
    • increase gradient
    • binary gradient
    opened by carolemieux 0
Releases(1.0)
Owner
Caroline Lemieux
Caroline Lemieux
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022