Select, weight and analyze complex sample data

Overview

Sample Analytics

docs

In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect the random mechanism. Samplics is a python package that implements a set of sampling techniques for complex survey designs. These survey sampling techniques are organized into the following four sub-packages.

Sampling provides a set of random selection techniques used to draw a sample from a population. It also provides procedures for calculating sample sizes. The sampling subpackage contains:

  • Sample size calculation and allocation: Wald and Fleiss methods for proportions.
  • Equal probability of selection: simple random sampling (SRS) and systematic selection (SYS)
  • Probability proportional to size (PPS): Systematic, Brewer's method, Hanurav-Vijayan method, Murphy's method, and Rao-Sampford's method.

Weighting provides the procedures for adjusting sample weights. More specifically, the weighting subpackage allows the following:

  • Weight adjustment due to nonresponse
  • Weight poststratification, calibration and normalization
  • Weight replication i.e. Bootstrap, BRR, and Jackknife

Estimation provides methods for estimating the parameters of interest with uncertainty measures that are consistent with the sampling design. The estimation subpackage implements the following types of estimation methods:

  • Taylor-based, also called linearization methods
  • Replication-based estimation i.e. Boostrap, BRR, and Jackknife
  • Regression-based e.g. generalized regression (GREG)

Small Area Estimation (SAE). When the sample size is not large enough to produce reliable / stable domain level estimates, SAE techniques can be used to model the output variable of interest to produce domain level estimates. This subpackage provides Area-level and Unit-level SAE methods.

For more details, visit https://samplics.readthedocs.io/en/latest/

Usage

Let's assume that we have a population and we would like to select a sample from it. The goal is to calculate the sample size for an expected proportion of 0.80 with a precision (half confidence interval) of 0.10.

from samplics.sampling import SampleSize

sample_size = SampleSize(parameter = "proportion")
sample_size.calculate(target=0.80, half_ci=0.10)

Furthermore, the population is located in four natural regions i.e. North, South, East, and West. We could be interested in calculating sample sizes based on region specific requirements e.g. expected proportions, desired precisions and associated design effects.

from samplics.sampling import SampleSize

sample_size = SampleSize(parameter="proportion", method="wald", stratification=True)

expected_proportions = {"North": 0.95, "South": 0.70, "East": 0.30, "West": 0.50}
half_ci = {"North": 0.30, "South": 0.10, "East": 0.15, "West": 0.10}
deff = {"North": 1, "South": 1.5, "East": 2.5, "West": 2.0}

sample_size = SampleSize(parameter = "proportion", method="Fleiss", stratification=True)
sample_size.calculate(target=expected_proportions, half_ci=half_ci, deff=deff)

To select a sample of primary sampling units using PPS method, we can use code similar to the snippets below. Note that we first use the datasets module to import the example dataset.

# First we import the example dataset
from samplics.datasets import load_psu_frame
psu_frame_dict = load_psu_frame()
psu_frame = psu_frame_dict["data"]

# Code for the sample selection
from samplics.sampling import SampleSelection

psu_sample_size = {"East":3, "West": 2, "North": 2, "South": 3}
pps_design = SampleSelection(
   method="pps-sys",
   stratification=True,
   with_replacement=False
   )

psu_frame["psu_prob"] = pps_design.inclusion_probs(
   psu_frame["cluster"],
   psu_sample_size,
   psu_frame["region"],
   psu_frame["number_households_census"]
   )

The initial weighting step is to obtain the design sample weights. In this example, we show a simple example of two-stage sampling design.

import pandas as pd

from samplics.datasets import load_psu_sample, load_ssu_sample
from samplics.weighting import SampleWeight

# Load PSU sample data
psu_sample_dict = load_psu_sample()
psu_sample = psu_sample_dict["data"]

# Load PSU sample data
ssu_sample_dict = load_ssu_sample()
ssu_sample = ssu_sample_dict["data"]

full_sample = pd.merge(
    psu_sample[["cluster", "region", "psu_prob"]],
    ssu_sample[["cluster", "household", "ssu_prob"]],
    on="cluster"
)

full_sample["inclusion_prob"] = full_sample["psu_prob"] * full_sample["ssu_prob"]
full_sample["design_weight"] = 1 / full_sample["inclusion_prob"]

To adjust the design sample weight for nonresponse, we can use code similar to:

import numpy as np

from samplics.weighting import SampleWeight

# Simulate response
np.random.seed(7)
full_sample["response_status"] = np.random.choice(
    ["ineligible", "respondent", "non-respondent", "unknown"],
    size=full_sample.shape[0],
    p=(0.10, 0.70, 0.15, 0.05),
)
# Map custom response statuses to teh generic samplics statuses
status_mapping = {
   "in": "ineligible",
   "rr": "respondent",
   "nr": "non-respondent",
   "uk":"unknown"
   }
# adjust sample weights
full_sample["nr_weight"] = SampleWeight().adjust(
   samp_weight=full_sample["design_weight"],
   adjust_class=full_sample["region"],
   resp_status=full_sample["response_status"],
   resp_dict=status_mapping
   )

To estimate population parameters using Taylor-based and replication-based methods, we can use code similar to:

# Taylor-based
from samplics.datasets import load_nhanes2

nhanes2_dict = load_nhanes2()
nhanes2 = nhanes2_dict["data"]

from samplics.estimation import TaylorEstimator

zinc_mean_str = TaylorEstimator("mean")
zinc_mean_str.estimate(
    y=nhanes2["zinc"],
    samp_weight=nhanes2["finalwgt"],
    stratum=nhanes2["stratid"],
    psu=nhanes2["psuid"],
    remove_nan=True,
)

# Replicate-based
from samplics.datasets import load_nhanes2brr

nhanes2brr_dict = load_nhanes2brr()
nhanes2brr = nhanes2brr_dict["data"]

from samplics.estimation import ReplicateEstimator

ratio_wgt_hgt = ReplicateEstimator("brr", "ratio").estimate(
    y=nhanes2brr["weight"],
    samp_weight=nhanes2brr["finalwgt"],
    x=nhanes2brr["height"],
    rep_weights=nhanes2brr.loc[:, "brr_1":"brr_32"],
    remove_nan=True,
)

To predict small area parameters, we can use code similar to:

import numpy as np
import pandas as pd

# Area-level basic method
from samplics.datasets import load_expenditure_milk

milk_exp_dict = load_expenditure_milk()
milk_exp = milk_exp_dict["data"]

from samplics.sae import EblupAreaModel

fh_model_reml = EblupAreaModel(method="REML")
fh_model_reml.fit(
    yhat=milk_exp["direct_est"],
    X=pd.get_dummies(milk_exp["major_area"], drop_first=True),
    area=milk_exp["small_area"],
    error_std=milk_exp["std_error"],
    intercept=True,
    tol=1e-8,
)
fh_model_reml.predict(
    X=pd.get_dummies(milk_exp["major_area"], drop_first=True),
    area=milk_exp["small_area"],
    intercept=True,
)

# Unit-level basic method
from samplics.datasets import load_county_crop, load_county_crop_means

# Load County Crop sample data
countycrop_dict = load_county_crop()
countycrop = countycrop_dict["data"]
# Load County Crop Area Means sample data
countycropmeans_dict = load_county_crop_means()
countycrop_means = countycropmeans_dict["data"]

from samplics.sae import EblupUnitModel

eblup_bhf_reml = EblupUnitModel()
eblup_bhf_reml.fit(
    countycrop["corn_area"],
    countycrop[["corn_pixel", "soybeans_pixel"]],
    countycrop["county_id"],
)
eblup_bhf_reml.predict(
    Xmean=countycrop_means[["ave_corn_pixel", "ave_corn_pixel"]],
    area=np.linspace(1, 12, 12),
)

Installation

pip install samplics

Python 3.7 or newer is required and the main dependencies are numpy, pandas, scpy, and statsmodel.

Contribution

If you would like to contribute to the project, please read contributing to samplics

License

MIT

Contact

created by Mamadou S. Diallo - feel free to contact me!

Owner
samplics
samplics
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023