This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Overview

Hierarchical Motion Understanding via Motion Programs (CVPR 2021)

Paper

This repository contains the official implementation of:

Hierarchical Motion Understanding via Motion Programs

full paper | short talk | long talk | project webpage

Motion Programs example

Running motion2prog

0. We start with video file and first prepare the input data

$ ffmpeg -i ${video_dir}/video.mp4 ${video_dir}/frames/%05d.jpg
$ python AlphaPose/scripts/demo_inference.py \
    --cfg AlphaPose/pretrained_models/256x192_res50_lr1e-3_1x.yaml \
    --checkpoint AlphaPose/pretrained_models/halpe26_fast_res50_256x192.pth \
    --indir ${video_dir}/frames --outdir ${video_dir}/pose_mpii_track \
    --pose_track --showbox --flip --qsize 256
$ mv ${video_dir}/pose_mpii_track/alphapose-results.json \
    ${video_dir}/alphapose-results-halpe26-posetrack.json

We packaged a demo video with necessary inputs for quickly testing our code

$ wget https://sumith1896.github.io/motion2prog/static/demo.zip
$ mv demo.zip data/  && cd data/ && unzip demo.zip && cd ..
  • We need 2D pose detection results & extracted frames of video (for visualization)

  • We support loading from different pose detector formats in the load function in lkeypoints.py.

  • We used AlphaPose with the above commands for all pose detection results.

Run motion program synthesis pipeline

1. With the data prepared, you can run the synthesis with the following command:

$ python fit.py -d data/demo/276_reg -k coco -a -x -c -p 1 -w 20 --no-acc \
--stat-thres 5 --span-thres 5 --cores 9 -r 1600 -o ./visualization/static/data/demo
  • The various options and their descriptions are explained in the fit.py file.

  • The results can be found under ./visualization/static/data/demo.

Visualizing the synthesized programs

2. We package a visualization server for visualizing the generated programs

$ cd visualization/
$ bash deploy.sh p
  • Open the directed the webpage and browse the results interactively.

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{motion2prog2021,
    Author = {Sumith Kulal and Jiayuan Mao and Alex Aiken and Jiajun Wu},
    Title = {Hierarchical Motion Understanding via Motion Programs},
    booktitle={CVPR},
    year={2021},
}

Checklist

Please open a GitHub issue or contact [email protected] for any issues or questions!

  • Upload pre-processed data used in paper.
  • Add for-loop synthesis layer.

Acknowledgements

We thank Karan Chadha, Shivam Garg and Shubham Goel for helpful discussions. This work is in part supported by Magic Grant from the Brown Institute for Media Innovation, the Samsung Global Research Outreach (GRO) Program, Autodesk, Amazon Web Services, and Stanford HAI for AWS Cloud Credits.

Parts of this repo use materials from SCANimate and fit.

Owner
Sumith Kulal
Insanely passionate about Computer Science.
Sumith Kulal
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022