code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

Overview

On Robust Prefix-Tuning for Text Classification

Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adapting pretrained language models to downstream tasks. However, we find that prefix-tuning suffers from adversarial attacks. While, unfortunately, current robust NLP methods are unsuitable for prefix-tuning as they will inevitably hamper the modularity of prefix-tuning. In our ICLR'22 paper, we propose robust prefix-tuning for text classification. Our method leverages the idea of test-time tuning, which preserves the strengths of prefix-tuning and improves its robustness at the same time. This repository contains the code for the proposed robust prefix-tuning method.

Prerequisite

PyTorch>=1.2.0, pytorch-transformers==1.2.0, OpenAttack==2.0.1, and GPUtil==1.4.0.

Train the original prefix P_θ

For the training phase of standard prefix-tuning, the command is:

  source train.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E]

where

  • [A]: The length of the prefix P_θ.
  • [B]: The (initial) learning rate.
  • [C]: The benchmark. Default: sst.
  • [D]: The total epochs during training.
  • [E]: The id of the GPU to be used.

We can also use adversarial training to improve the robustness of the prefix. For the training phase of adversarial prefix-tuning, the command is:

  source train_adv.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E] --pgd_ball [F]

where

  • [A]~[E] have the same meanings with above.
  • [F]: where norm ball is word-wise or sentence-wise.

Note that the DATA_DIR and MODEL_DIR in train_adv.sh are different from those in train.sh. When experimenting with the adversarially trained prefix P_θ's in the following steps, remember to switch the DATA_DIR and MODEL_DIR in the corresponding scripts as well.

Generate Adversarial Examples

We use the OpenAttack package to generate in-sentence adversaries. The command is:

  source generate_adv_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H]

where

  • [A],[B],[C],[E] have the same meanings with above.
  • [G]: Load the prefix P_θ parameters trained for [G] epochs for testing. We set G=D.
  • [H]: Generate adversarial examples based on clean test set with the in-sentence attack [H].

We also implement the Universal Adversarial Trigger attack. The command is:

  source generate_adv_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean-[H2] --uat_len [I] --uat_epoch [J]

where

  • [A],[B],[C],[E],[G] have the same meanings with above.
  • [H2]: We should search for UATs for each class in the benchmark, and H2 indicates the class id. H2=0/1 for SST, 0/1/2/3 for AG News, and 0/1/2 for SNLI.
  • [I]: The length of the UAT.
  • [J]: The epochs for exploiting UAT.

Test the performance of P_θ

The command for performance testing of P_θ under clean data and in-sentence attacks is:

  source test_prefix_theta_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K]

Under UAT attack, the test command is:

  source test_prefix_theta_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K]

where

  • [A]~[I] have the same meanings with above.
  • [K]: The test batch size. when K=0, the batch size is adaptive (determined by GPU memory); when K>0, the batch size is fixed.

Robust Prefix P'_ψ: Constructing the canonical manifolds

By constructing the canonical manifolds with PCA, we get the projection matrices. The command is:

  source get_proj.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G]

where [A]~[G] have the same meanings with above.

Robust Prefix P'_ψ: Test its performance

Under clean data and in-sentence attacks, the command is:

  source test_robust_prefix_psi_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

Under UAT attack, the test command is:

  source test_robust_prefix_psi_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

where

  • [A]~[K] have the same meanings with above.
  • [L]: The learning rate for test-time P'_ψ tuning.
  • [M]: The iterations for test-time P'_ψ tuning.

Running Example

# Train the original prefix P_θ
source train.sh --tasks sst --n_train_epochs 100 --device 0
source train_adv.sh --tasks sst --n_train_epochs 100 --device 1 --pgd_ball word

# Generate Adversarial Examples
source generate_adv_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-0 --uat_len 3 --uat_epoch 10
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-1 --uat_len 3 --uat_epoch 10

# Test the performance of P_θ
source test_prefix_theta_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0
source test_prefix_theta_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0

# Robust Prefix P'_ψ: Constructing the canonical manifolds
source get_proj.sh --tasks sst --device 0 --test_ep 100

# Robust Prefix P'_ψ: Test its performance
source test_robust_prefix_psi_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0 --PMP_lr 0.15 --PMP_iter 10
source test_robust_prefix_psi_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0 --PMP_lr 0.05 --PMP_iter 10

Released Data & Models

The training the original prefix P_θ and the process of generating adversarial examples can be time-consuming. As shown in our paper, the adversarial prefix-tuning is particularly slow. Efforts need to be paid on generating adversaries as well, since different attacks are to be performed on the test set based on each trained prefix. We also found that OpenAttack is now upgraded to v2.1.1, which causes compatibility issues in our codes (test_prefix_theta_insent.py).

In order to facilitate research on the robustness of prefix-tuning, we release the prefix checkpoints P_θ (with both std. and adv. training), the processed test sets that are perturbed by in-sentence attacks (including PWWS and TextBugger), as well as the generated projection matrices of the canonical manifolds in our runs for reproducibility and further enhancement. We have also hard-coded the exploited UAT tokens in test_prefix_theta_uat.py and test_robust_prefix_psi_uat.py. All the materials can be found here.

Acknowledgements:

The implementation of robust prefix tuning is based on the LAMOL repo, which is the code of LAMOL: LAnguage MOdeling for Lifelong Language Learning that studies NLP lifelong learning with GPT-style pretrained language models.

Bibtex

If you find this repository useful for your research, please consider citing our work:

@inproceedings{
  yang2022on,
  title={On Robust Prefix-Tuning for Text Classification},
  author={Zonghan Yang and Yang Liu},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=eBCmOocUejf}
}
Owner
Zonghan Yang
Graduate student in Tsinghua University. Two drifters, off to see the world - there's such a lot of world to see...
Zonghan Yang
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022