Neighborhood Reconstructing Autoencoders

Overview

Neighborhood Reconstructing Autoencoders

The official repository for (Lee, Kwon, and Park, NeurIPS 2021).

This paper proposes Neighborhood Reconstructing Autoencoders (NRAE), which is a graph-based autoencoder that explicitly accounts for the local connectivity and geometry of the data, and consequently learns a more accurate data manifold and representation.

Preview (synthetic data)

Figure 1: De-noising property of the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).
Figure 2: Correct local connectivity learned by the NRAE (Left: Vanilla AE, Middle: NRAE-L, Right: NRAE-Q).

Preview (rotated/shifted MNIST)

Figure 3: Generated sequences of rotated images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).
Figure 3: Generated sequences of shifted images by travelling the 1d latent spaces (Top: Vanilla AE, Middle: NRAE-L, Bottom: NRAE-Q).

Environment

The project is developed under a standard PyTorch environment.

  • python 3.8.8
  • numpy
  • matplotlib
  • imageio
  • argparse
  • yaml
  • omegaconf
  • torch 1.8.0
  • CUDA 11.1

Running

python train_{X}.py --config configs/{A}_{B}_{C}.yml --device 0
  • X is either synthetic or MNIST
  • A is either AE, NRAEL, or NRAEQ
  • B is either toy or mnist
  • If B is toy, then C is either denoising or geometry_preserving. Elseif B is mnist, then C is either rotated or shifted.

Playing with the code

  • The most important parameters requiring tuning include: i) the number of nearest neighbors for graph construction num_nn and ii) kernel parameter lambda (you can find these parameters in configs/NRAEL_toy_denoising.yml for example).
  • We empirically observe that setting as include_center=True (when defining data loader) has performance advantange.
  • You can add a new type of 2d synthetic dataset in loader.synthetic_dataset.SyntheticData.get_data (currently, we have sincurve and swiss_roll).

Citation

If you found this library useful in your research, please consider citing:

@article{lee2021neighborhood,
  title={Neighborhood Reconstructing Autoencoders},
  author={Lee, Yonghyeon and Kwon, Hyeokjun and Park, Frank},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Yonghyeon Lee
Ph.D. Student in Robotics laboratory at the Seoul National University
Yonghyeon Lee
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022