BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

Overview

BraTS(Brain Tumour Segmentation) using V-Net

This project is an approach to detect brain tumours using BraTS 2016,2017 dataset.

Description

BraTS is a dataset which provides multimodal 3D brain MRIs annotated by experts. Each Magnetic Resonance Imaging(MRI) scan consists of 4 different modalities(Flair,T1w,t1gd,T2w). Expert annotations are provided in the form of segmentation masks to detect 3 classes of tumour - edema(ED),enhancing tumour(ET),necrotic and non-enhancing tumour(NET/NCR). The dataset is challenging in terms of the complex and heterogeneously-located targets. We use Volumetric Network(V-Net) which is a 3D Fully Convolutional Network(FCN) for segmentation of 3D medical images. We use Dice Loss as the objective function for the present scenario. Future implementation will include Hausdorff Loss for better boundary segmentations.



Fig 1: Brain Tumour Segmentation

Getting Started

Dataset

4D Multimodal MRI dataset

The dataset contains 750 4D volumes of MRI scans(484 for training and 266 for testing). Since the test set is not publicly available we split the train set into train-val-split. We use 400 scans for training and validation and the rest 84 for evaluation. No data augmentations are applied to the data. The data is stored in NIfTI file format(.nii.gz). A 4D tensor of shape (4,150,240,240) is obtained after reading the data where the 1st dimension denotes the modality(Flair,T1w,t1gd,T2w), 2nd dimension denotes the number of slices and the 3rd and 4th dimesion denotes the width and height respectively. We crop each modality to (32,128,128) for computational purpose and stack each modality along the 0th axis. The segmentation masks contain 3 classes - ED,ET,NET/NCR. We resize and stack each class to form a tensor of shape (3,32,128,128).

Experimental Details

Loss functions

We use Dice loss as the objective function to train the model.




Training

We use Adam optimizer for optimizing the objective function. The learning rate is initially set to 0.001 and halved after every 100 epochs. We train the network until 300 epochs and the best weights are saved accordingly. We use NVIDIA Tesla P100 with 16 GB of VRAM to train the model.

Quantative Results

We evaluate the model on the basis of Dice Score Coefficient(DSC) and Intersection over Union(IoU) over three classes (WT+TC+ET).




Qualitative Results



Fig 1: Brain Complete Tumour Segmentation(blue indicates ground truth segmentation and red indicates predicted segmentation)

Statistical Inference



Fig 1: Validation Dice Score Coefficient(DSC)


Fig 2: Validation Dice Loss

Dependencies

  • SimpleITK 2.0.2
  • Pytorch 1.8.0
  • CUDA 10.2
  • TensorBoard 2.5.0

Installing

 pip install SimpleITK
 pip install tensorboard

Execution

 python train.py

train.py contains code for training the model and saving the weights.

loader.py contains code for dataloading and train-test split.

utils.py contains utility functions.

evaluate.py contains code for evaluation.

Acknowledgments

[1] BraTS 3D UNet

[2] VNet

Owner
Rituraj Dutta
Passionate about AI and Deep Learning
Rituraj Dutta
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022