Official implementation of paper Gradient Matching for Domain Generalization

Related tags

Deep Learningfish
Overview

Gradient Matching for Domain Generalisation

This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper, we propose an inter-domain gradient matching (IDGM) objective that targets domain generalization by maximizing the inner product between gradients from different domains. To avoid computing the expensive second-order derivative of the IDGM objective, we derive a simpler first-order algorithm named Fish that approximates its optimization.

This repository contains code to reproduce the main results of our paper.

Dependencies

(Recommended) You can setup up conda environment with all required dependencies using environment.yml:

conda env create -f environment.yml
conda activate fish

Otherwise you can also install the following packages manually:

python=3.7.10
numpy=1.20.2
pytorch=1.8.1
torchaudio=0.8.1
torchvision=0.9.1
torch-cluster=1.5.9
torch-geometric=1.7.0
torch-scatter=2.0.6
torch-sparse=0.6.9
wilds=1.1.0
scikit-learn=0.24.2
scipy=1.6.3
seaborn=0.11.1
tqdm=4.61.0

Running Experiments

We offer options to train using our proposed method Fish or by using Empirical Risk Minimisation baseline. This can be specified by the --algorithm flag (either fish or erm).

CdSprites-N

We propose this simple shape-color dataset based on the dSprites dataset, which contains a collection of white 2D sprites of different shapes, scales, rotations and positions. The dataset contains N domains, where N can be specified. The goal is to classify the shape of the sprites, and there is a shape-color deterministic matching that is specific per domain. This way we have shape as the invariant feature and color as the spurious feature. On the test set, however, this correlation between color and shape is removed. See the image below for an illustration.

cdsprites

The CdSprites-N dataset can be downloaded here. After downloading, please extract the zip file to your preferred data dir (e.g. <your_data_dir>/cdsprites). The following command runs an experiment using Fish with number of domains N=15:

python main.py --dataset cdsprites --algorithm fish --data-dir <your_data_dir> --num-domains 15

The number of domains you can choose from are: N = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

WILDS

We include the following 6 datasets from the WILDS benchmark: amazon, camelyon, civil, fmow, iwildcam, poverty. The datasets can be downloaded automatically to a specified data folder. For instance, to train with Fish on Amazon dataset, simply run:

python main.py --dataset amazon --algorithm fish --data-dir <your_data_dir>

This should automatically download the Amazon dataset to <your_data_dir>/wilds. Experiments on other datasets can be ran by the following commands:

python main.py --dataset camelyon --algorithm fish --data-dir <your_data_dir>
python main.py --dataset civil --algorithm fish --data-dir <your_data_dir>
python main.py --dataset fmow --algorithm fish --data-dir <your_data_dir>
python main.py --dataset iwildcam --algorithm fish --data-dir <your_data_dir>
python main.py --dataset poverty --algorithm fish --data-dir <your_data_dir>

Alternatively, you can also download the datasets to <your_data_dir>/wilds manually by following the instructions here. See current results on WILDS here: image

DomainBed

For experiments on datasets including CMNIST, RMNIST, VLCS, PACS, OfficeHome, TerraInc and DomainNet, we implemented Fish on the DomainBed benchmark (see here) and you can compare our algorithm against up to 20 SOTA baselines. See current results on DomainBed here:

image

Citation

If you make use of this code in your research, we would appreciate if you considered citing the paper that is most relevant to your work:

@article{shi2021gradient,
	title="Gradient Matching for Domain Generalization.",
	author="Yuge {Shi} and Jeffrey {Seely} and Philip H. S. {Torr} and N. {Siddharth} and Awni {Hannun} and Nicolas {Usunier} and Gabriel {Synnaeve}",
	journal="arXiv preprint arXiv:2104.09937",
	year="2021"}

Contributions

We welcome contributions via pull requests. Please email [email protected] or [email protected] for any question/request.

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023