Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Overview

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

This is an accompanying repository to the ICAIL 2021 paper entitled "Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains". All the data and the code used in the experiments reported in the paper are to be found here.

Data

The data set consists of 807 adjudicatory decisions from 7 different countries (6 languages) annotated in terms of the following type system:

  • Out of Scope - Parts outside of the main document body (e.g., metadata, editorial content, dissents, end notes, appendices).
  • Heading - Typically an incomplete sentence or marker starting a section (e.g., “Discussion,” “Analysis,” “II.”).
  • Background - The part where the court describes procedural history, relevant facts, or the parties’ claims.
  • Analysis - The section containing reasoning of the court, issues, and application of law to the facts of the case.
  • Introductory Summary - A brief summary of the case at the beginning of the decision.
  • Outcome - A few sentences stating how the case was decided (i.e, the overall outcome of the case).

The country specific subsets:

  • Canada - Random selection of cases retrieved from www.canlii.org from multiple provinces. The selection is not limited to any specific topic or court.
  • Czech Republic - A random selection of cases from Constitutional Court (30), Supreme Court (40), and Supreme Administrative Court (30). Temporal distribution was taken into account.
  • France - A selection of cases decided by Cour de cassation between 2011 and 2019. A stratified sampling based on the year of publication of the decision was used to select the cases.
  • Germany - A stratified sample from the federal jurisprudence database spanning all federal courts (civil, criminal, labor, finance, patent, social, constitutional, and administrative).
  • Italy - The top 100 cases of the criminal courts stored between 2015 and 2020 mentioning “stalking” and keyed to the Article 612 bis of the Criminal Code.
  • Poland - A stratified sample from trial-level, appellate, administrative courts, the Supreme Court, and the Constitutional tribunal. The cases mention “democratic country ruled by law.”
  • U.S.A. I - Federal district court decisions in employment law mentioning “motion for summary judgment,” “employee,” and “independent contractor.”
  • U.S.A. II - Administrative decisions from the U.S. Department of Labor. Top 100 ordered in reverse chronological rulings order, starting in October 2020, were selected.

For more detailed information, please, refer to the original paper.

How to Use

ICAIL 2021 Data

The data used in the ICAIL 2021 experiments can be found in the following paths:

data/Country-Language-*/annotator-*-ICAIL2021.csv

Note that the Canadian subset could not be included in this repository due to concerns about personal information protection in Canada. However, it can be obtained upon request at [email protected]. Once you obtain the data, you just need to create data/Canada-EN-1 directory and place all the files there.

If you would like to experiment with different preprocessing techniques the original texts are placed in the following paths:

data/Country-Language-*/texts

You can find the annotations corresponding to these texts here:

data/Country-Language-*/annotator-*.csv

The texts cleaned of the Out of Scope and Heading segments (via dataset_clean.py) are placed in the following paths:

data/Country-Language-*/texts-clean-annotator-*

Note that the processing depends on annotations. Hence, there are several versions of documents at this stage if there were multiple annotators. The annotations corresponding to the cleaned texts are here:

data/Country-Language-*/annotator-*-clean.csv

The dataset_ICAIL2021.py has the processing code that has been applied to the cleaned texts and annotations to generate the ICAIL 2021 dataset (see above). Note, that the code will skip the Czech Republic subset by default. This is because this subset requires an external resource for sentence segmentation (czech-pdt-ud-X.X-XXXXXX.udpipe). You first need to obtain the file at https://universaldependencies.org/. Then, you need to place it into the data directory. Then, you can remove the Czech_Republic-CZ-1 string from the EXCLUDED tuple in dataset_ICAIL2021.py. Finally, you need to replace the data/czech-pdt-ud-2.5-191206.udpipe string in the utils.py to correspond to the file that you have downloaded. After these changes, the code will also operate on the Czech Republic part of the dataset.

Dataset Statistics

To replicate the inter-annotator agreement analysis performed in the ICAIL 2021 paper you can use the ia_agreement.ipynb notebook.

To generate the dataset statistics reported in the ICAIL 2021 paper you can use the dataset_statistics.ipynb notebook.

Experiments

The file ICAIL2021_experiments.ipynb contains the code necessary to run the code presented in the paper. This includes the code to embed the sentences of the cases into a multilingual vector representation, the definition of the Gated Recurrent Unit model and the code to train and evaluated along the different experiments described in the paper. It also contains the code to create the visualizations presented in the discussion section of the paper.

The notebook can be run in two different ways:

Attribution

We kindly ask you to cite the following paper:

@inproceedings{savelka2021,
    title={Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains},
    author={Jaromir Savelka and Hannes Westermann and Karim Benyekhlef and Charlotte S. Alexander and Jayla C. Grant and David Restrepo Amariles and Rajaa El Hamdani and S\'{e}bastien Mee\`{u}s and Aurore Troussel and Micha\l\ Araszkiewicz and Kevin D. Ashley and Alexandra Ashley and Karl Branting and Mattia Falduti and Matthias Grabmair and Jakub Hara\v{s}ta and Tereza Novotn\'a, Elizabeth Tippett and Shiwanni Johnson},
    year={2021},
    booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law},
    publisher={Association for Computing Machinery},
    doi={10.1145/3462757.3466149}
}

Jaromir Savelka, Hannes Westermann, Karim Benyekhlef, Charlotte S. Alexander, Jayla C. Grant, David Restrepo Amariles, Rajaa El Hamdani, Sébastien Meeùs, Aurore Troussel, Michał Araszkiewicz, Kevin D. Ashley, Alexandra Ashley, Karl Branting, Mattia Falduti, Matthias Grabmair, Jakub Harašta, Tereza Novotná, Elizabeth Tippett, and Shiwanni Johnson. 2021. Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains. In Eighteenth International Conference for Artificial Intelligence and Law (ICAIL’21), June 21–25, 2021, São Paulo, Brazil. ACM, New York,NY, USA, 10 pages. https://doi.org/10.1145/3462757.3466149

DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022