Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Overview

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

This is an accompanying repository to the ICAIL 2021 paper entitled "Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains". All the data and the code used in the experiments reported in the paper are to be found here.

Data

The data set consists of 807 adjudicatory decisions from 7 different countries (6 languages) annotated in terms of the following type system:

  • Out of Scope - Parts outside of the main document body (e.g., metadata, editorial content, dissents, end notes, appendices).
  • Heading - Typically an incomplete sentence or marker starting a section (e.g., “Discussion,” “Analysis,” “II.”).
  • Background - The part where the court describes procedural history, relevant facts, or the parties’ claims.
  • Analysis - The section containing reasoning of the court, issues, and application of law to the facts of the case.
  • Introductory Summary - A brief summary of the case at the beginning of the decision.
  • Outcome - A few sentences stating how the case was decided (i.e, the overall outcome of the case).

The country specific subsets:

  • Canada - Random selection of cases retrieved from www.canlii.org from multiple provinces. The selection is not limited to any specific topic or court.
  • Czech Republic - A random selection of cases from Constitutional Court (30), Supreme Court (40), and Supreme Administrative Court (30). Temporal distribution was taken into account.
  • France - A selection of cases decided by Cour de cassation between 2011 and 2019. A stratified sampling based on the year of publication of the decision was used to select the cases.
  • Germany - A stratified sample from the federal jurisprudence database spanning all federal courts (civil, criminal, labor, finance, patent, social, constitutional, and administrative).
  • Italy - The top 100 cases of the criminal courts stored between 2015 and 2020 mentioning “stalking” and keyed to the Article 612 bis of the Criminal Code.
  • Poland - A stratified sample from trial-level, appellate, administrative courts, the Supreme Court, and the Constitutional tribunal. The cases mention “democratic country ruled by law.”
  • U.S.A. I - Federal district court decisions in employment law mentioning “motion for summary judgment,” “employee,” and “independent contractor.”
  • U.S.A. II - Administrative decisions from the U.S. Department of Labor. Top 100 ordered in reverse chronological rulings order, starting in October 2020, were selected.

For more detailed information, please, refer to the original paper.

How to Use

ICAIL 2021 Data

The data used in the ICAIL 2021 experiments can be found in the following paths:

data/Country-Language-*/annotator-*-ICAIL2021.csv

Note that the Canadian subset could not be included in this repository due to concerns about personal information protection in Canada. However, it can be obtained upon request at [email protected]. Once you obtain the data, you just need to create data/Canada-EN-1 directory and place all the files there.

If you would like to experiment with different preprocessing techniques the original texts are placed in the following paths:

data/Country-Language-*/texts

You can find the annotations corresponding to these texts here:

data/Country-Language-*/annotator-*.csv

The texts cleaned of the Out of Scope and Heading segments (via dataset_clean.py) are placed in the following paths:

data/Country-Language-*/texts-clean-annotator-*

Note that the processing depends on annotations. Hence, there are several versions of documents at this stage if there were multiple annotators. The annotations corresponding to the cleaned texts are here:

data/Country-Language-*/annotator-*-clean.csv

The dataset_ICAIL2021.py has the processing code that has been applied to the cleaned texts and annotations to generate the ICAIL 2021 dataset (see above). Note, that the code will skip the Czech Republic subset by default. This is because this subset requires an external resource for sentence segmentation (czech-pdt-ud-X.X-XXXXXX.udpipe). You first need to obtain the file at https://universaldependencies.org/. Then, you need to place it into the data directory. Then, you can remove the Czech_Republic-CZ-1 string from the EXCLUDED tuple in dataset_ICAIL2021.py. Finally, you need to replace the data/czech-pdt-ud-2.5-191206.udpipe string in the utils.py to correspond to the file that you have downloaded. After these changes, the code will also operate on the Czech Republic part of the dataset.

Dataset Statistics

To replicate the inter-annotator agreement analysis performed in the ICAIL 2021 paper you can use the ia_agreement.ipynb notebook.

To generate the dataset statistics reported in the ICAIL 2021 paper you can use the dataset_statistics.ipynb notebook.

Experiments

The file ICAIL2021_experiments.ipynb contains the code necessary to run the code presented in the paper. This includes the code to embed the sentences of the cases into a multilingual vector representation, the definition of the Gated Recurrent Unit model and the code to train and evaluated along the different experiments described in the paper. It also contains the code to create the visualizations presented in the discussion section of the paper.

The notebook can be run in two different ways:

Attribution

We kindly ask you to cite the following paper:

@inproceedings{savelka2021,
    title={Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains},
    author={Jaromir Savelka and Hannes Westermann and Karim Benyekhlef and Charlotte S. Alexander and Jayla C. Grant and David Restrepo Amariles and Rajaa El Hamdani and S\'{e}bastien Mee\`{u}s and Aurore Troussel and Micha\l\ Araszkiewicz and Kevin D. Ashley and Alexandra Ashley and Karl Branting and Mattia Falduti and Matthias Grabmair and Jakub Hara\v{s}ta and Tereza Novotn\'a, Elizabeth Tippett and Shiwanni Johnson},
    year={2021},
    booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law},
    publisher={Association for Computing Machinery},
    doi={10.1145/3462757.3466149}
}

Jaromir Savelka, Hannes Westermann, Karim Benyekhlef, Charlotte S. Alexander, Jayla C. Grant, David Restrepo Amariles, Rajaa El Hamdani, Sébastien Meeùs, Aurore Troussel, Michał Araszkiewicz, Kevin D. Ashley, Alexandra Ashley, Karl Branting, Mattia Falduti, Matthias Grabmair, Jakub Harašta, Tereza Novotná, Elizabeth Tippett, and Shiwanni Johnson. 2021. Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains. In Eighteenth International Conference for Artificial Intelligence and Law (ICAIL’21), June 21–25, 2021, São Paulo, Brazil. ACM, New York,NY, USA, 10 pages. https://doi.org/10.1145/3462757.3466149

QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022