Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Related tags

Deep LearningBBI
Overview

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

This repository contains the code for the BBI optimizer, introduced in the paper Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization. 2201.11137. It is implemented using Pytorch.

The repository also includes the code needed to reproduce all the experiments presented in the paper. In particular:

  • The BBI optimizer is implemented in the file inflation.py.

  • The jupyter notebooks with the synthetic experiments are in the folder synthetic. All the notebooks already include the output, and text files with results are also included in the folder. In particular

    • The notebook ackley.ipynb can be used to reproduce the results in Sec. 4.1.
    • The notebook zakharov.ipynb can be used to reproduce the results in Sec. 4.2.
    • The notebook multi_basin.ipynb can be used to reproduce the results in Sec. 4.3.
  • The ML benchmarks described in Sec. 4.5 can be found in the folders CIFAR and MNIST. The notebooks already include some results that can be inspected, but not all the statistics that builds up the results in Table 2. In particular:

    • CIFAR : The notebook CIFAR-notebook.ipynb uses hyperopt to estimate the best hyperparameters for each optimizer and then runs a long run with the best estimated hyperparamers. The results can be analyzed with the notebook analysis-cifar.ipynb, which can also be used to generate more runs with the best hyperparameters to gather more statistics. The subfolder results already includes some runs that can be inspected.

    • MNIST: The notebooks mnist_scan_BBI.ipynb and mnist_scan_SGD.ipynb perform a grid scan using BBI and SGD, respectively and gather some small statistics. All the results are within the notebooks themselves.

  • The PDE experiments can be run by running the script script-PDE.sh as

    bash script-PDE.sh
    

    This will solve the PDE outlined in Sec. 4.4 and App. C multiple times with the same initialization. The hyperparameters are also kept fixed and can be obtained from the script itself. In particular:

    • feature 1 means that an L2 regularization is added to the loss.
    • seed specifies the seed, which fixes the initialization of the network. The difference between the different runs then is only due to the random bounces, which are not affected by this choice of the seed.

    The folder results already includes some runs. The runs performed in this way are not noisy, i.e. the set of points sampled from the domain is kept fixed. To randomly change the points every "epoch" (1000 iterations), edit the file experiments/PDE_PoissonD.py by changing line 134 to self.update_points = True.

The code has been tested with Python 3.9, Pytorch 1.10, hyperopt 0.2.5. We ran the synthetic experiments and MNIST on a six-core i7-9850H CPU with 16 GB of RAM, while we ran the CIFAR and PDE experiments on a pair of GPUs. We tested both on a pair of NVIDIA GeForce RTX 2080 Ti and on a pair of NVIDIA Tesla V100-SXM2-16GB GPUs, coupled with 32 GB of RAM and AMD EPYC 7502P CPUs.

The Resnet-18 code (in experiments/models) and the utils.py helper functions are adapted from https://github.com/kuangliu/pytorch-cifar (MIT License).

Owner
G. Bruno De Luca
G. Bruno De Luca
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Facebook Research 605 Jan 02, 2023
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022