PyImpetus is a Markov Blanket based feature subset selection algorithm that considers features both separately and together as a group in order to provide not just the best set of features but also the best combination of features

Overview

forthebadge made-with-python ForTheBadge built-with-love

PyPI version shields.io Downloads Maintenance

PyImpetus

PyImpetus is a Markov Blanket based feature selection algorithm that selects a subset of features by considering their performance both individually as well as a group. This allows the algorithm to not only select the best set of features, but also select the best set of features that play well with each other. For example, the best performing feature might not play well with others while the remaining features, when taken together could out-perform the best feature. PyImpetus takes this into account and produces the best possible combination. Thus, the algorithm provides a minimal feature subset. So, you do not have to decide on how many features to take. PyImpetus selects the optimal set for you.

PyImpetus has been completely revamped and now supports binary classification, multi-class classification and regression tasks. It has been tested on 14 datasets and outperformed state-of-the-art Markov Blanket learning algorithms on all of them along with traditional feature selection algorithms such as Forward Feature Selection, Backward Feature Elimination and Recursive Feature Elimination.

How to install?

pip install PyImpetus

Functions and parameters

# The initialization of PyImpetus takes in multiple parameters as input
# PPIMBC is for classification
model = PPIMBC(model, p_val_thresh, num_simul, simul_size, simul_type, sig_test_type, cv, verbose, random_state, n_jobs)
  • model - estimator object, default=DecisionTreeClassifier() The model which is used to perform classification in order to find feature importance via significance-test.
  • p_val_thresh - float, default=0.05 The p-value (in this case, feature importance) below which a feature will be considered as a candidate for the final MB.
  • num_simul - int, default=30 (This feature has huge impact on speed) Number of train-test splits to perform to check usefulness of each feature. For large datasets, the value should be considerably reduced though do not go below 5.
  • simul_size - float, default=0.2 The size of the test set in each train-test split
  • simul_type - boolean, default=0 To apply stratification or not
    • 0 means train-test splits are not stratified.
    • 1 means the train-test splits will be stratified.
  • sig_test_type - string, default="non-parametric" This determines the type of significance test to use.
    • "parametric" means a parametric significance test will be used (Note: This test selects very few features)
    • "non-parametric" means a non-parametric significance test will be used
  • cv - cv object/int, default=0 Determines the number of splits for cross-validation. Sklearn CV object can also be passed. A value of 0 means CV is disabled.
  • verbose - int, default=2 Controls the verbosity: the higher, more the messages.
  • random_state - int or RandomState instance, default=None Pass an int for reproducible output across multiple function calls.
  • n_jobs - int, default=-1 The number of CPUs to use to do the computation.
    • None means 1 unless in a :obj:joblib.parallel_backend context.
    • -1 means using all processors.
# The initialization of PyImpetus takes in multiple parameters as input
# PPIMBR is for regression
model = PPIMBR(model, p_val_thresh, num_simul, simul_size, sig_test_type, cv, verbose, random_state, n_jobs)
  • model - estimator object, default=DecisionTreeRegressor() The model which is used to perform regression in order to find feature importance via significance-test.
  • p_val_thresh - float, default=0.05 The p-value (in this case, feature importance) below which a feature will be considered as a candidate for the final MB.
  • num_simul - int, default=30 (This feature has huge impact on speed) Number of train-test splits to perform to check usefulness of each feature. For large datasets, the value should be considerably reduced though do not go below 5.
  • simul_size - float, default=0.2 The size of the test set in each train-test split
  • sig_test_type - string, default="non-parametric" This determines the type of significance test to use.
    • "parametric" means a parametric significance test will be used (Note: This test selects very few features)
    • "non-parametric" means a non-parametric significance test will be used
  • cv - cv object/int, default=0 Determines the number of splits for cross-validation. Sklearn CV object can also be passed. A value of 0 means CV is disabled.
  • verbose - int, default=2 Controls the verbosity: the higher, more the messages.
  • random_state - int or RandomState instance, default=None Pass an int for reproducible output across multiple function calls.
  • n_jobs - int, default=-1 The number of CPUs to use to do the computation.
    • None means 1 unless in a :obj:joblib.parallel_backend context.
    • -1 means using all processors.
# To fit PyImpetus on provided dataset and find recommended features
fit(data, target)
  • data - A pandas dataframe upon which feature selection is to be applied
  • target - A numpy array, denoting the target variable
# This function returns the names of the columns that form the MB (These are the recommended features)
transform(data)
  • data - A pandas dataframe which needs to be pruned
# To fit PyImpetus on provided dataset and return pruned data
fit_transform(data, target)
  • data - A pandas dataframe upon which feature selection is to be applied
  • target - A numpy array, denoting the target variable
# To plot XGBoost style feature importance
feature_importance()

How to import?

from PyImpetus import PPIMBC, PPIMBR

Usage

# Import the algorithm. PPIMBC is for classification and PPIMBR is for regression
from PyImeptus import PPIMBC, PPIMBR
# Initialize the PyImpetus object
model = PPIMBC(model=SVC(random_state=27, class_weight="balanced"), p_val_thresh=0.05, num_simul=30, simul_size=0.2, simul_type=0, sig_test_type="non-parametric", cv=5, random_state=27, n_jobs=-1, verbose=2)
# The fit_transform function is a wrapper for the fit and transform functions, individually.
# The fit function finds the MB for given data while transform function provides the pruned form of the dataset
df_train = model.fit_transform(df_train.drop("Response", axis=1), df_train["Response"].values)
df_test = model.transform(df_test)
# Check out the MB
print(model.MB)
# Check out the feature importance scores for the selected feature subset
print(model.feat_imp_scores)
# Get a plot of the feature importance scores
model.feature_importance()

For better accuracy

Note: Play with the values of num_simul, simul_size, simul_type and p_val_thresh because sometimes a specific combination of these values will end up giving best results

  • Increase the cv value In all experiments, cv did not help in getting better accuracy. Use this only when you have extremely small dataset
  • Increase the num_simul value
  • Try one of these values for simul_size = {0.1, 0.2, 0.3, 0.4}
  • Use non-linear models for feature selection. Apply hyper-parameter tuning on models
  • Increase value of p_val_thresh in order to increase the number of features to include in thre Markov Blanket

For better speeds

  • Decrease the cv value. For large datasets cv might not be required. Therefore, set cv=0 to disable the aggregation step. This will result in less robust feature subset selection but at much faster speeds
  • Decrease the num_simul value but don't decrease it below 5
  • Set n_jobs to -1
  • Use linear models

For selection of less features

  • Try reducing the p_val_thresh value
  • Try out sig_test_type = "parametric"

Performance in terms of Accuracy (classification) and MSE (regression)

Dataset # of samples # of features Task Type Score using all features Score using featurewiz Score using PyImpetus # of features selected % of features selected Tutorial
Ionosphere 351 34 Classification 88.01% 92.86% 14 42.42% tutorial here
Arcene 100 10000 Classification 82% 84.72% 304 3.04%
AlonDS2000 62 2000 Classification 80.55% 86.98% 88.49% 75 3.75%
slice_localization_data 53500 384 Regression 6.54 5.69 259 67.45% tutorial here

Note: Here, for the first, second and third tasks, a higher accuracy score is better while for the fourth task, a lower MSE (Mean Squared Error) is better.

Performance in terms of Time (in seconds)

Dataset # of samples # of features Time (with PyImpetus)
Ionosphere 351 34 35.37
Arcene 100 10000 1570
AlonDS2000 62 2000 125.511
slice_localization_data 53500 384 1296.13

Future Ideas

  • Let me know

Feature Request

Drop me an email at [email protected] if you want any particular feature

Please cite this work as

Reference to the upcoming paper will be added here

Owner
Atif Hassan
PhD student at the Center of Excellence for AI, IIT Kharagpur.
Atif Hassan
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023