Face detection using deep learning.

Overview

Face Detection Docker Solution Using Faster R-CNN



Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe through an easy to use docker image. Bring your videos and images, run dockerface and obtain videos and images with bounding boxes of face detections and an easy to use face detection annotation text file.

The docker image is large for now because OpenCV has to be compiled and stored in the image to be able to use video and it takes up a lot of space.

Technical details and some experiments are described in the Arxiv Tech Report.

Citing Dockerface

If you find Dockerface useful in your research please consider citing:

@ARTICLE{2017arXiv170804370R,
   author = {{Ruiz}, N. and {Rehg}, J.~M.},
    title = "{Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1708.04370},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2017,
    month = aug,
   adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170804370R},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Instructions

Install NVIDIA CUDA (8 - preferably) and cuDNN (v5 - preferably)

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

Install docker

https://docs.docker.com/engine/installation/

Install nvidia-docker

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb

Go to your working folder and create a directory called data, your videos and images should go here. Also create a folder called output.

cd $WORKING_DIR
mkdir data
mkdir output

Run the docker container

sudo nvidia-docker run -it -v $PWD/data:/opt/py-faster-rcnn/edata -v $PWD/output/video:/opt/py-faster-rcnn/output/video -v $PWD/output/images:/opt/py-faster-rcnn/output/images natanielruiz/dockerface:latest

Now we have to recompile Caffe for it to work on your own machine.

cd caffe-fast-rcnn
rm -rf build
mkdir build
cd build
cmake -DUSE_CUDNN=1 ..
make -j20 && make pycaffe
cd ../..

Finally use this command to process a video

python tools/run_face_detection_on_video.py --gpu 0 --video edata/YOUR_VIDEO_FILENAME --output_string STRING_TO_BE_APPENDED_TO_OUTPUTFILE_NAME --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

Use this command to process an image

python tools/run_face_detection_on_image.py --gpu 0 --image edata/YOUR_IMAGE_FILENAME --output_string STRING_TO_BE_APPENDED_TO_OUTPUTFILE_NAME --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

Also if you are looking to conveniently process all images in one folder use this command

python tools/facedetection_images.py --gpu 0 --image_folder edata/IMAGE_FOLDER_NAME --output_folder OUTPUT_FOLDER_PATH --conf_thresh CONFIDENCE_THRESHOLD_FOR_DETECTIONS

The default confidence threshold is 0.85 which works for high quality videos or images where the faces are clearly visible. You can play around with this value.

The columns contained in the output text files are:

For videos:

frame_number x_min y_min x_max y_max confidence_score

For images:

image_path x_min y_min x_max y_max confidence_score

Where (x_min,y_min) denote the coordinates of the upper-left corner of the bounding box in image intrinsic coordinates and (x_max, y_max) denote the coordinates of the lower-right corner of the bounding box in image intrinsic coordinates. (ref. https://www.mathworks.com/help/images/image-coordinate-systems.html) confidence_score denotes the probability output of the model that the detection is correct (it is a number included in [0,1])

Voila, that easy!

After you're done with the docker container you can exit.

exit

You want to restart and re-attach to this same docker container so as to avoid compiling Caffe again. To do this first get the id for that container.

sudo docker ps -a

It should be the last one that was launched. Take note of CONTAINER ID. Then start and attach to that container.

sudo docker start CONTAINER_ID
sudo docker attach CONTAINER_ID

You can now continue processing videos.

Nataniel Ruiz and James M. Rehg
Georgia Institute of Technology

Credits: Original dockerface logo made by Freepik from Flaticon is licensed by Creative Commons BY 3.0, modified by Nataniel Ruiz.

Owner
Nataniel Ruiz
PhD candidate at Boston University doing Computer Vision and ML. M.S. from Georgia Tech, BA/M.S. from Ecole Polytechnique
Nataniel Ruiz
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022