LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

Overview

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

Where we are ?

12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了

ckpt__448_epoch_25.pth mIoU Overall IoU [email protected]
Refcoco val 70.743 71.671 82.26
Refcoco testA 73.679 74.772 -
Refcoco testB 67.582 67.339 -

12.29 45epoch的结果又上升了大约1%

ckpt__448_epoch_45.pth mIoU Overall IoU
Refcoco val 71.949 72.246
Refcoco testA 74.533 75.467
Refcoco testB 67.849 68.123

the pretrain model will be released soon

对原论文的复现

论文链接: https://arxiv.org/abs/2112.02244

官方实现: https://github.com/yz93/LAVT-RIS

Architecture

Features

  • 将不同模态feature的fusion提前到Image Encoder阶段

  • 思路上对这两篇论文有很多借鉴

    • Vision-Language Transformer and Query Generation for Referring Segmentation

    • Locate then Segment: A Strong Pipeline for Referring Image Segmentation

  • 采用了比较新的主干网络 Swin-Transformer

Usage

详细参数设置可以见args.py

for training

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12345 main.py --batch_size 2 --cfg_file configs/swin_base_patch4_window7_224.yaml --size 448

for evaluation

CUDA_VISIBLE_DEVICES=4,5,6,7 python -m torch.distributed.launch --nproc_per_node 4 --master_port 23458 main.py --size 448 --batch_size 1 --resume --eval --type val --eval_mode cat --pretrain ckpt_448_epoch_20.pth --cfg_file configs/swin_base_patch4_window7_224.yaml

*.pth 都放在./checkpoint

for resume from checkpoint

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 12346 main.py --batch_size 2 --cfg_file configs/swin_base_patch4_window7_224.yaml --size 448 --resume --pretrain ckpt_448_epoch_10.pth

for dataset preparation

please get details from ./data/readme.md

Need to be finished

由于我在复现的时候,官方的code还没有出来,所以一些细节上的设置可能和官方code不同

  • Swin Transformer 我选择的是 swin_base_patch4_window12_384_22k.pth,具体代码可以参考官方代码 https://github.com/microsoft/Swin-Transformer/blob/main/get_started.md 原论文中的图像resize的尺寸是480*480,可是我目前基于官方的代码若想调到这个尺寸,总是会报错,查了一下觉得可能用object detection 的swin transformer的code比较好

    12.27 这个问题目前也已经得到了较好的解决,目前训练用的是 swin_base_patch4_window7_224_22k.pth, 输入图片的尺寸调整到448*448

    解决方案可以参考:

    https://github.com/microsoft/Swin-Transformer/issues/155

  • 原论文中使用的lr_scheduler是polynomial learning rate decay, 没有给出具体的参数手动设置了一下

    12.21 目前来看感觉自己设置的不是很好

    12.27 调整了一下设置,初始学习率的设置真的很重要,特别是根据batch_size 去scale你的 inital learning rate

  • 原论文中的batch_size=32,基于自己的实验我猜想应该是用了8块GPU,每一块的batch_size=4, 由于我第一次写DDP code,训练时发现,程序总是会在RANK0上给其余RANK开辟类似共享显存的东西,导致我无法做到原论文相同的配置,需要改进

  • 仔细观察Refcoco的数据集,会发现一个target会对应好几个sentence,training时我设计的是随机选一个句子,evaluate时感觉应该要把所有句子用上会更好,关于这一点我想了两种evaluate的方法

    目前eval 只能支持 batch_size=1

    • 将所有句子concatenate成为一个句子,送入BERT,Input 形式上就是(Image,cat(sent_1,sent_2,sent_3)) => model => pred

    实验发现这种eval_mode 下的mean IOU 会好不少, overall_IOU 也会好一点

    • 对同一张图片处理多次处理,然后将结果进行平均,Input 形式上就是 ((Image,sent_1),(Image,sent_2),(Image,sent_3)) => model => average(pred_1,pred_2,pred_3)

Visualization

详细见inference.ipynb

input sentences

  1. right girl
  2. closest girl on right

results

Failure cases study

AnalysisFailure.ipynb 提供了一个研究model不work的途径,主要是筛选了IoU < 0.5的case,并在这些case中着重查看了一下IoU < 0.10.4 < IoU < 0.5 的例子

目前我只看了一些有限的failure cases,做了如下总结

  • 模型对于similar,dense object在language guide下定位不精确
  • 模型对于language的理解不分主次
  • refcoco本身标记的一些问题
Owner
zichengsaber
CVer
zichengsaber
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022