An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Overview

Automatic Augmentation Zoo

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

We will post updates regularly so you can star 🌟 or watch 👓 this repository for the latest.

Introduction

This repository provides the official implementations of OHL and AWS, and will also integrate some other popular auto-aug methods (like Auto Augment, Fast AutoAugment and Adversarial autoaugment) in pure PyTorch. We use torch.distributed to conduct the distributed training. The model checkpoints will be upload to GoogleDrive or OneDrive soon.

Dependencies

It would be recommended to conduct experiments under:

  • python 3.6.3
  • pytorch 1.1.0, torchvision 0.2.1

All the dependencies are listed in requirements.txt. You may use commands like pip install -r requirements.txt to install them.

Running

  1. Create the directory for your experiment.
cd /path/to/this/repo
mkdir -p exp/aws_search1
  1. Copy configurations into your workspace.
cp scripts/search.sh configs/aws.yaml exp/aws_search1
cd exp/aws_search1
  1. Start searching
# sh ./search.sh  
sh ./search.sh Test 8

An instance of yaml:

version: 0.1.0

dist:
    type: torch
    kwargs:
        node0_addr: auto
        node0_port: auto
        mp_start_method: fork   # fork or spawn; spawn would be too slow for Dalaloader

pipeline:
    type: aws
    common_kwargs:
        dist_training: &dist_training False
#        job_name:         [will be assigned in runtime]
#        exp_root:         [will be assigned in runtime]
#        meta_tb_lg_root:  [will be assigned in runtime]

        data:
            type: cifar100               # case-insensitive (will be converted to lower case in runtime)
#            dataset_root: /path/to/dataset/root   # default: ~/datasets/[type]
            train_set_size: 40000
            val_set_size: 10000
            batch_size: 256
            dist_training: *dist_training
            num_workers: 3
            cutout: True
            cutlen: 16

        model_grad_clip: 3.0
        model:
            type: WRN
            kwargs:
#                num_classes: [will be assigned in runtime]
                bn_mom: 0.5

        agent:
            type: ppo           # ppo or REINFORCE
            kwargs:
                initial_baseline_ratio: 0
                baseline_mom: 0.9
                clip_epsilon: 0.2
                max_training_times: 5
                early_stopping_kl: 0.002
                entropy_bonus: 0
                op_cfg:
                    type: Adam         # any type in torch.optim
                    kwargs:
#                        lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                        betas: !!python/tuple [0.5, 0.999]
                        weight_decay: 0
                sc_cfg:
                    type: Constant
                    kwargs:
                        base_lr_divisor: 8      # base_lr = warmup_lr / base_lr_divisor
                        warmup_lr: 0.1          # lr at the end of warming up
                        warmup_iters: 10      # warmup_epochs = epochs / warmup_divisor
                        iters: &finetune_lp 350
        
        criterion:
            type: LSCE
            kwargs:
                smooth_ratio: 0.05


    special_kwargs:
        pretrained_ckpt_path: ~ # /path/to/pretrained_ckpt.pth.tar
        pretrain_ep: &pretrain_ep 200
        pretrain_op: &sgd
            type: SGD       # any type in torch.optim
            kwargs:
#                lr: [will be assigned in runtime] (=sc.kwargs.base_lr)
                nesterov: True
                momentum: 0.9
                weight_decay: 0.0001
        pretrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.2          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *pretrain_ep
                min_lr: &finetune_lr 0.001

        finetuned_ckpt_path: ~  # /path/to/finetuned_ckpt.pth.tar
        finetune_lp: *finetune_lp
        finetune_ep: &finetune_ep 10
        rewarded_ep: 2
        finetune_op: *sgd
        finetune_sc:
            type: Constant
            kwargs:
                base_lr: *finetune_lr
                warmup_lr: *finetune_lr
                warmup_iters: 0
                epochs: *finetune_ep

        retrain_ep: &retrain_ep 300
        retrain_op: *sgd
        retrain_sc:
            type: Cosine
            kwargs:
                base_lr_divisor: 4      # base_lr = warmup_lr / base_lr_divisor
                warmup_lr: 0.4          # lr at the end of warming up
                warmup_divisor: 200     # warmup_epochs = epochs / warmup_divisor
                epochs: *retrain_ep
                min_lr: 0

Citation

If you're going to to use this code in your research, please consider citing our papers (OHL and AWS).

@inproceedings{lin2019online,
  title={Online Hyper-parameter Learning for Auto-Augmentation Strategy},
  author={Lin, Chen and Guo, Minghao and Li, Chuming and Yuan, Xin and Wu, Wei and Yan, Junjie and Lin, Dahua and Ouyang, Wanli},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={6579--6588},
  year={2019}
}

@article{tian2020improving,
  title={Improving Auto-Augment via Augmentation-Wise Weight Sharing},
  author={Tian, Keyu and Lin, Chen and Sun, Ming and Zhou, Luping and Yan, Junjie and Ouyang, Wanli},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Contact for Issues

References & Opensources

A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022