A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Overview

Movenet.Pytorch

license

Intro

start

MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Google just release pre-train models(tfjs or tflite), which cannot be converted to some CPU inference framework such as NCNN,Tengine,MNN,TNN, and we can not add our own custom data to finetune, so there is this repo.

How To Run

1.Download COCO dataset2017 from https://cocodataset.org/. (You need train2017.zip, val2017.zip and annotations.)Unzip to movenet.pytorch/data/ like this:

├── data
    ├── annotations (person_keypoints_train2017.json, person_keypoints_val2017.json, ...)
    ├── train2017   (xx.jpg, xx.jpg,...)
    └── val2017     (xx.jpg, xx.jpg,...)

2.Make data to our data format.

python scripts/make_coco_data_17keypooints.py
Our data format: JSON file
Keypoints order:['nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 
    'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 
    'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 
    'right_ankle']

One item:
[{"img_name": "0.jpg",
  "keypoints": [x0,y0,z0,x1,y1,z1,...],
  #z: 0 for no label, 1 for labeled but invisible, 2 for labeled and visible
  "center": [x,y],
  "bbox":[x0,y0,x1,y1],
  "other_centers": [[x0,y0],[x1,y1],...],
  "other_keypoints": [[[x0,y0],[x1,y1],...],[[x0,y0],[x1,y1],...],...], #lenth = num_keypoints
 },
 ...
]

3.You can add your own data to the same format.

4.After putting data at right place, you can start training

python train.py

5.After training finished, you need to change the test model path to test. Such as this in predict.py

run_task.modelLoad("output/xxx.pth")

6.run predict to show predict result, or run evaluate.py to compute my acc on test dataset.

python predict.py

7.Convert to onnx.

python pth2onnx.py

Training Results

Some good samples

good

Some bad cases

bad

Tips to improve

1. Focus on data

  • Add COCO2014. (But as I know it has some duplicate data of COCO2017, and I don't know if google use it.)
  • Clean the croped COCO2017 data. (Some img just have little points, such as big face, big body,etc.MoveNet is a small network, COCO data is a little hard for it.)
  • Add some yoga, fitness, and dance videos frame from YouTube. (Highly Recommened! Cause Google did this on their Movenet and said 'Evaluations on the Active validation dataset show a significant performance boost relative to identical architectures trained using only COCO. ')

2. Change backbone

Try to ransfer Mobilenetv2(original Movenet) to Mobilenetv3 or Shufflenetv2 may get a litte improvement.If you just wanna reproduce the original Movenet, u can ignore this.

3. More fancy loss

Surely this is a muti-task learning. So add some loss to learn together may improve the performence. (Such as BoneLoss which I have added.) And we can never know how Google trained, cause we cannot see it from the pre-train tflite model file, so you can try any loss function you like.

4. Data Again

I just wanna you know the importance of the data. The more time you spend on clean data and add new data, the better performance your model will get! (While tips 2 and 3 may not.)

Resource

  1. Blog:Next-Generation Pose Detection with MoveNet and TensorFlow.js
  2. model card
  3. TFHub:movenet/singlepose/lightning
  4. My article share: 2021轻量级人体姿态估计模型修炼之路(附谷歌MoveNet复现经验)
Owner
Mr.Fire
Mr.Fire
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022