Variational autoencoder for anime face reconstruction

Overview

VAE animeface

Variational autoencoder for anime face reconstruction

Introduction

This repository is an exploratory example to train a variational autoencoder to extract meaningful feature representations of anime girl face images.

The code architecture is mostly borrowed and modified from Yann Dubois's disentangling-vae repository. It has nice summarization and comparison of the different VAE model proposed recently.

Dataset

Anime Face Dataset contains 63,632 anime faces. (all rescaled to 64x64 in training)

https://raw.githubusercontent.com/Mckinsey666/Anime-Face-Dataset/master/test.jpg

Model

The model used is the one proposed in the paper Understanding disentangling in β-VAE, which is summarized below:

https://github.com/YannDubs/disentangling-vae/raw/master/doc/imgs/architecture.png

I used laplace as the target distribution to calculate the reconstruction loss. From Yann's code, it suggests that bernoulli would generally a better choice, but it looks it converge slowly in my case. (I didn't do a fair comparison to be conclusive)

Loss function used is β-VAEH from β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework.

Result

Latent feature number is set to 20 (10 gaussian mean, 10 log gaussian variance). VAE model is trained for 100 epochs. All data is used for training, no validation and testing applied.

Face reconstruction

results/laplace_betaH_loss/test1_recons.png

results/laplace_betaH_loss/test2_recons.png

results/laplace_betaH_loss/test3_recons.png

Prior space traversal

Based on the face reconstruction result while traversing across the latent space, we may speculate the generative property of each latent as following:

  1. Hair shade
  2. Hair length
  3. Face orientation
  4. Hair color
  5. Face rotation
  6. Bangs, face color
  7. Hair glossiness
  8. Unclear
  9. Eye size & color
  10. Bangs

results/laplace_betaH_loss/test_prior_traversals.png

Original faces clustering

Original anime faces are clustered based on latent features (selected feature is either below 1% (left 5) or above 99% (right 5) among all data points, while the rest latent features are closeto each other). Visulization of the original images mostly confirms the speculation above.

results/laplace_betaH_loss/test_original_traversals.png

Latent feature diagnosis

Learned latent features are all close to standard normal distribution, and show minimum correlation.

results/laplace_betaH_loss/latent_diagnosis.png

Owner
Minzhe Zhang
Graduate student in UT Southwestern Medical Center. Bioinformatician. Computational biologist.
Minzhe Zhang
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022