QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Related tags

Deep LearningQAHOI
Overview

QAHOI

QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Requirements

  • PyTorch >= 1.5.1
  • torchvision >= 0.6.1
pip install -r requirements.txt
  • Compiling CUDA operators
cd ./models/ops
sh ./make.sh
# test
python test.py

Dataset Preparation

Please follow the HICO-DET dataset preparation of GGNet.

After preparation, the data folder as follows:

data
├── hico_20160224_det
|   ├── images
|   |   ├── test2015
|   |   └── train2015
|   └── annotations
|       ├── anno_list.json
|       ├── corre_hico.npy
|       ├── file_name_to_obj_cat.json
|       ├── hoi_id_to_num.json
|       ├── hoi_list_new.json
|       ├── test_hico.json
|       └── trainval_hico.json

Evaluation

Download the model to params folder.

  • We test the model with NVIDIA A6000 GPU, Pytorch 1.9.0, Python 3.8 and CUDA 11.2.
Model Full (def) Rare (def) None-Rare (def) Full (ko) Rare (ko) None-Rare (ko) Download
Swin-Tiny 28.47 22.44 30.27 30.99 24.83 32.84 model
Swin-Base*+ 33.58 25.86 35.88 35.34 27.24 37.76 model
Swin-Large*+ 35.78 29.80 37.56 37.59 31.36 39.36 model

Evaluating the model by running the following command.

--eval_extra to evaluate the spatio contribution.

mAP_default.json and mAP_ko.json will save in current folder.

  • Swin-Tiny
python main.py --resume params/QAHOI_swin_tiny_mul3.pth --backbone swin_tiny --num_feature_levels 3 --use_nms --eval
  • Swin-Base*+
python main.py --resume params/QAHOI_swin_base_384_22k_mul3.pth --backbone swin_base_384 --num_feature_levels 3 --use_nms --eval
  • Swin-Large*+
python main.py --resume params/QAHOI_swin_large_384_22k_mul3.pth --backbone swin_large_384 --num_feature_levels 3 --use_nms --eval

Training

Download the pre-trained swin-tiny model from Swin-Transformer to params folder.

Training QAHOI with Swin-Tiny from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_tiny \
        --pretrained params/swin_tiny_patch4_window7_224.pth \
        --output_dir logs/swin_tiny_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Base*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_base_384 \
        --pretrained params/swin_base_patch4_window7_224_22k.pth \
        --output_dir logs/swin_base_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Large*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_large_384 \
        --pretrained params/swin_large_patch4_window12_384_22k.pth \
        --output_dir logs/swin_large_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Citation

@article{cjw,
  title={QAHOI: Query-Based Anchors for Human-Object Interaction Detection},
  author={Junwen Chen and Keiji Yanai},
  journal={arXiv preprint arXiv:2112.08647},
  year={2021}
}
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023