QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Related tags

Deep LearningQAHOI
Overview

QAHOI

QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Requirements

  • PyTorch >= 1.5.1
  • torchvision >= 0.6.1
pip install -r requirements.txt
  • Compiling CUDA operators
cd ./models/ops
sh ./make.sh
# test
python test.py

Dataset Preparation

Please follow the HICO-DET dataset preparation of GGNet.

After preparation, the data folder as follows:

data
├── hico_20160224_det
|   ├── images
|   |   ├── test2015
|   |   └── train2015
|   └── annotations
|       ├── anno_list.json
|       ├── corre_hico.npy
|       ├── file_name_to_obj_cat.json
|       ├── hoi_id_to_num.json
|       ├── hoi_list_new.json
|       ├── test_hico.json
|       └── trainval_hico.json

Evaluation

Download the model to params folder.

  • We test the model with NVIDIA A6000 GPU, Pytorch 1.9.0, Python 3.8 and CUDA 11.2.
Model Full (def) Rare (def) None-Rare (def) Full (ko) Rare (ko) None-Rare (ko) Download
Swin-Tiny 28.47 22.44 30.27 30.99 24.83 32.84 model
Swin-Base*+ 33.58 25.86 35.88 35.34 27.24 37.76 model
Swin-Large*+ 35.78 29.80 37.56 37.59 31.36 39.36 model

Evaluating the model by running the following command.

--eval_extra to evaluate the spatio contribution.

mAP_default.json and mAP_ko.json will save in current folder.

  • Swin-Tiny
python main.py --resume params/QAHOI_swin_tiny_mul3.pth --backbone swin_tiny --num_feature_levels 3 --use_nms --eval
  • Swin-Base*+
python main.py --resume params/QAHOI_swin_base_384_22k_mul3.pth --backbone swin_base_384 --num_feature_levels 3 --use_nms --eval
  • Swin-Large*+
python main.py --resume params/QAHOI_swin_large_384_22k_mul3.pth --backbone swin_large_384 --num_feature_levels 3 --use_nms --eval

Training

Download the pre-trained swin-tiny model from Swin-Transformer to params folder.

Training QAHOI with Swin-Tiny from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_tiny \
        --pretrained params/swin_tiny_patch4_window7_224.pth \
        --output_dir logs/swin_tiny_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Base*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_base_384 \
        --pretrained params/swin_base_patch4_window7_224_22k.pth \
        --output_dir logs/swin_base_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Large*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_large_384 \
        --pretrained params/swin_large_patch4_window12_384_22k.pth \
        --output_dir logs/swin_large_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Citation

@article{cjw,
  title={QAHOI: Query-Based Anchors for Human-Object Interaction Detection},
  author={Junwen Chen and Keiji Yanai},
  journal={arXiv preprint arXiv:2112.08647},
  year={2021}
}
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Mask-invariant Face Recognition through Template-level Knowledge Distillation

Mask-invariant Face Recognition through Template-level Knowledge Distillation This is the official repository of "Mask-invariant Face Recognition thro

Fadi Boutros 35 Dec 06, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022