Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Overview

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble

DOI License: MIT

This is the code for reproducing the results of the paper Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble accepted at NeurIPS'2021.

This code builds up from the offical code of Reset-Free Lifelong Learning with Skill-Space Planning, originally derived from rlkit.

If you find this repository useful for your research, please cite:

@inproceedings{
    an2021edac,
    title={Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble},
    author={Gaon An and Seungyong Moon and Jang-Hyun Kim and Hyun Oh Song},
    booktitle={Neural Information Processing Systems},
    year={2021}
}

Requirements

To install all the required dependencies:

  1. Install MuJoCo engine, which can be downloaded from here.

  2. Install Python packages listed in requirements.txt using pip. You should specify the versions of mujoco_py and dm_control in requirements.txt depending on the version of MuJoCo engine you have installed as follows:

    • MuJoCo 2.0: mujoco-py<2.1,>=2.0, dm_control==0.0.364896371
    • MuJoCo 2.1.0: mujoco-py<2.2,>=2.1, dm_control==0.0.403778684
    • MuJoCo 2.1.1: to be updated
  3. Manually download and install d4rl package from here. You should remove lines including dm_control in setup.py.

Here is an example of how to install all the dependencies on Ubuntu:

conda create -n edac python=3.7
conda activate edac
# Specify versions of mujoco-py and dm_control in requirements.txt
pip install --no-cache-dir -r requirements.txt

cd .
git clone https://github.com/rail-berkeley/d4rl.git

cd d4rl
# Remove lines including 'dm_control' in setup.py
pip install -e .

Reproducing the results

Gym

To reproduce SAC-N results for MuJoCo Gym, run:

python -m scripts.sac --env_name [ENVIRONMENT] --num_qs [N]

To reproduce EDAC results for MuJoCo Gym, run:

python -m scripts.sac --env_name [ENVIRONMENT] --num_qs [N] --eta [ETA]

Adroit

On Adroit tasks, we apply reward normalization for further training stability. For example, to reproduce the EDAC results for pen-human, run:

python -m scripts.sac --env_name pen-human-v1 --epoch 200 --num_qs 20 --plr 3e-5 --eta 1000 --reward_mean --reward_std

To reproduce the EDAC results for pen-cloned, run:

python -m scripts.sac --env_name pen-human-v1 --epoch 200 --num_qs 20 --plr 3e-5 --eta 10 --max_q_backup --reward_mean --reward_std

Acknowledgement

This work was supported in part by Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00882, (SW STAR LAB) Development of deployable learning intelligence via self-sustainable and trustworthy machine learning and No. 2019-0-01371, Development of brain-inspired AI with human-like intelligence), and Research Resettlement Fund for the new faculty of Seoul National University. This material is based upon work supported by the Air Force Office of Scientific Research under award number FA2386-20-1-4043.

You might also like...
Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Official implementation of our CVPR2021 paper
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

This is the official PyTorch implementation of the paper
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

StyleGAN2-ADA - Official PyTorch implementation
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Official PyTorch implementation of
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

Official PyTorch implementation of RobustNet (CVPR 2021 Oral)
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

[PyTorch] Official implementation of CVPR2021 paper
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Comments
  • Performance on D4RL AntMaze tasks?

    Performance on D4RL AntMaze tasks?

    Hello, I have a question about the performance of SAC-N or EDAC on AntMaze tasks. Have you ever tested it?

    In my experiments based on this official implementation, I found that average returns in evaluation are always 0, which is worse than behavior cloning. Then I try to run with a modified reward (r=4*(r-0.5)) and max Q backup. However, they didn't help.

    I'll appreciate it a lot if you give me some related advices. Thanks a lot.

    opened by yuxudong20 3
Releases(v1.0)
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022