Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

Overview

SegSwap

Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

[PDF] [Project page]

teaser

teaser

If our project is helpful for your research, please consider citing :

@article{shen2021learning,
  title={Learning Co-segmentation by Segment Swapping for Retrieval and Discovery},
  author={Shen, Xi and Efros, Alexei A and Joulin, Armand and Aubry, Mathieu},
  journal={arXiv},
  year={2021}

Table of Content

1. Installation

1.1. Dependencies

Our model can be learnt on a a single GPU Tesla-V100-16GB. The code has been tested in Pytorch 1.7.1 + cuda 10.2

Other dependencies can be installed via (tqdm, kornia, opencv-python, scipy) :

bash requirement.sh

1.2. Pre-trained MocoV2-resnet50 + cross-transformer (~300M)

Quick download :

cd model/pretrained
bash download_model.sh

2. Training Data Generation

2.1. Download COCO (~20G)

This command will download coco2017 training set + annotations (~20G).

cd data/COCO2017/download_coco.sh
bash download_coco.sh

2.2. Image Pairs with One Repeated Object

2.2.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_1obj.py --out-dir pairs_1obj_100k 

2.2.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.2.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_1obj/vis.html

2.3. Image Pairs with Two Repeated Object

2.3.1 Generating 100k pairs (~18G)

This command will generate 100k image pairs with one repeated object.

cd data/
python generate_2obj.py --out-dir pairs_2obj_100k 

2.3.1 Examples of image pairs

Source Blended Obj + Background Stylised Source Stylised Background

2.3.2 Visualizing correspondences and masks of the generated pairs

This command will generate 10 pairs and visualize correspondences and masks of the pairs.

cd data/
bash vis_pair.sh

These pairs can be illustrated via vis10_2obj/vis.html

3. Evaluation

3.1 One-shot Art Detail Detection on Brueghel Dataset

3.1.1 Visual results: top-3 retrieved images

teaser

3.1.2 Data

Brueghel dataset has been uploaded in this repo

3.1.3 Quantitative results

The following command conduct evaluation on Brueghel with pre-trained cross-transformer:

cd evalBrueghel
python evalBrueghel.py --out-coarse out_brueghel.json --resume-pth ../model/hard_mining_neg5.pth --label-pth ../data/Brueghel/brueghelTest.json

Note that this command will save the features of Brueghel(~10G).

3.2 Place Recognition on Tokyo247 Dataset

3.2.1 Visual results: top-3 retrieved images

teaser

3.2.2 Data

Download Tokyo247 from its project page

Download the top-100 results used by patchVlad(~1G).

The data needs to be organised:

./SegSwap/data/Tokyo247
                    ├── query/
                        ├── 247query_subset_v2/
                    ├── database/
...

./SegSwap/evalTokyo
                    ├── top100_patchVlad.npy

3.2.3 Quantitative results

The following command conduct evaluation on Tokyo247 with pre-trained cross-transformer:

cd evalTokyo
python evalTokyo.py --qry-dir ../data/Tokyo247/query/247query_subset_v2 --db-dir ../data/Tokyo247/database --resume-pth ../model/hard_mining_neg5.pth

3.3 Place Recognition on Pitts30K Dataset

3.3.1 Visual results: top-3 retrieved images

teaser

3.3.2 Data

Download Pittsburgh dataset from its project page

Download the top-100 results used by patchVlad (~4G).

The data needs to be organised:

./SegSwap/data/Pitts
                ├── queries_real/
...

./SegSwap/evalPitts
                    ├── top100_patchVlad.npy

3.3.3 Quantitative results

The following command conduct evaluation on Pittsburgh30K with pre-trained cross-transformer:

cd evalPitts
python evalPitts.py --qry-dir ../data/Pitts/queries_real --db-dir ../data/Pitts --resume-pth ../model/hard_mining_neg5.pth

3.4 Discovery on Internet Dataset

3.4.1 Visual results

teaser

3.4.2 Data

Download Internet dataset from its project page

We provide a script to quickly download and preprocess the data (~400M):

cd data/Internet
bash download_int.sh

The data needs to be organised:

./SegSwap/data/Internet
                ├── Airplane100
                    ├── GroundTruth                
                ├── Horse100
                    ├── GroundTruth                
                ├── Car100
                    ├── GroundTruth                                

3.4.3 Quantitative results

The following commands conduct evaluation on Internet with pre-trained cross-transformer

cd evalInt
bash run_pair_480p.sh
bash run_best_only_cycle.sh

4. Training

Stage 1: standard training

Supposing that the generated pairs are saved in ./SegSwap/data/pairs_1obj_100k and ./SegSwap/data/pairs_2obj_100k.

Training command can be found in ./SegSwap/train/run.sh.

Note that this command should be able to be launched on a single GPU with 16G memory.

cd train
bash run.sh

Stage 2: hard mining

In train/run_hardmining.sh, replacing --resume-pth by the model trained in the 1st stage, than running:

cd train
bash run_hardmining.sh

5. Acknowledgement

We appreciate helps from :

Part of code is borrowed from our previous projects: ArtMiner and Watermark

6. ChangeLog

  • 21/10/21, model, evaluation + training released

7. License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including Kornia, Pytorch, and uses datasets which each have their own respective licenses that must also be followed.

Owner
xshen
Ph.D, Computer Vision, Deep Learning.
xshen
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023